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Continuous state Markov decision problem

> dynamics: zz41 = fe(@e, ue, we)

> o, Wo, Wi, ... independent

> stage cost: g¢(ze, ut, we)

> (state feedback) policy: us = ue(z:)

» choose policy to minimize

T-1

J=E Z ge(xe, ue, we) + gr(z7)

t=0
» we consider the case X = R", Y = R™
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Continuous state Markov decision problem

» many (mostly mathematical) pathologies can occur in this case
> but not in the special case we'll consider

» a basic issue: how do you even represent the functions f;, g, and p:?
» for n and m very small (say, 2 or 3) we can use gridding
> we can give the coefficients in some (dense) basis of functions

» most generally, we assume we have a method to compute function values,
given the arguments

> exponential growth that occurs in gridding is called curse of dimensionality
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Continuous state Markov decision problem: Dynamic programming

> set Vr(z) = gr(z)
» fort=T-1,...,0,

pe(z) € argmin, E (g:(z, v, wt) + Vg1 (fi(z, v, wr)))
Vi(z) = E(g:(z, pe(z), we) + Vipr(fe(z, pe(z), we)))

» this gives value functions and optimal policy, in principle only

» but you can’t in general represent, much less compute, V; or ut

Continuous state Markov decision process



Continuous state Markov decision problem: Dynamic programming

for DP to be tractable, f; and g: need to have special form for which we can

> represent V%, u: in some tractable way

» carry out expectation and minimization in DP recursion
one of the few situations where this holds: linear quadratic problems

> f is an affine function of z;, u; (‘linear dynamical system’)

> g: are convex quadratic functions of ¢, u:

Continuous state Markov decision process



Linear quadratic problems

for linear quadratic problems
» value functions V}* are quadratic
» hence representable by their coefficients

> we can carry out the expectation and the minimization in DP recursion
explicitly using linear algebra

» optimal policy functions are affine: p}(z) = Kiz + [

» we can compute the coefficients K; and I; explicitly

in other words:
we can solve linear quadratic stochastic control problems in practice

Continuous state Markov decision process
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Affine functions

» f:R? — RY is affine if it has the form
f(z)=Az+d
i.e., it is a linear function plus a constant
» a linear function is special case, with b =0

» affine functions closed under sum, scalar multiplication, composition
(with explicit formulas for coefficients in each case)

Affine and quadratic functions



Quadratic function

» f:R™ — R is quadratic if it has the form
#(2) = (1/2)2" Po + ¢"c + (1/2)r
with P = PT € R™*" (the 1/2 on r is for convenience)

» often write as quadratic form in (z, 1):
z T P g z
f($)=(1/2)[ : } { 5o ] [ X ]

» quadratic form: ¢ =0, r =0

> special cases:

» affine (linear) function: P =0 (P =0, r =0)
» constant: P=0,¢=0
> uniqueness: f(z)=f(z) < P=P, q=§, r="%

Affine and quadratic functions 10



Calculus of quadratic functions

» quadratic functions on R™ form a vector space of dimension

n(n +1)

1
gt

> ie., they are closed under addition, scalar multiplication

Affine and quadratic functions
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Composition of quadratic and affine functions

> suppose
> f(2) = (1/2)zT Pz + qTz + (1/2)r is quadratic function on R™
» g(z) = Az + b is affine function from R™ into R™

» then composition h(z) = (f o g)(z) = f(Az + b) is quadratic

> write h(z) as

SRR (CHEEREH)]

» so matrix multiplication gives us the coefficient matrix of h

g
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Convexity and nonnegativity of a quadratic function

» f is convex (graph does not curve down) if and only if P > 0 (matrix
inequality)

» f is strictly convex (graph curves up) if and only if P > 0 (matrix
inequality)

> f is nonnegative (i.e., f(z) > 0 for all z) if and only if

P g
>

» f(z) > 0if and only if matrix inequality is strict

> nonnegative = convex

Affine and quadratic functions



Checking convexity and nonnegativity

> we can check convexity or nonnegativity in O(n®) operations by
eigenvalue decomposition, Cholesky factorization, ...

» composition with affine function preserves convexity, nonnegativity:
f convex, g affine = f o g convex

» linear combination of convex quadratics, with nonnegative coefficients, is
convex quadratic

» if f(z, w) is convex quadratic in = for each w (a random variable) then
9(z) = Ef(z, w)

is convex quadratic (i.e., convex quadratics closed under expectation)

Affine and quadratic functions
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Minimizing a quadratic

» if f is not convex, then min, f(z) = —oc0
» otherwise, £ minimizes f if and only if Vf(z) = Pz +¢=0
> for g € range(P), min, f(z) = —oc0
» for P > 0, unique minimizer is ¢ = —P 1q
» minimum value is
minf(z) = —~(1/2)g" P "}q + (1/2)r
(a concave quadratic function of gq)

» for case P >0, g € range(P), replace P! with P?

Affine and quadratic functions
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Partial minimization of a quadratic

» suppose f is a quadratic function of (z,u), convex in u

» then the partial minimization function
9(z) = minf(z, )
is a quadratic function of z; if f is convex, so is g
» the minimizer argmin, f(z, u) is an affine function of z

> minimizing a convex quadratic function over some variables yields a
convex quadratic function of the remaining ones

> i.e., convex quadratics closed under partial minimization

Affine and quadratic functions
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Partial minimization of a quadratic

> let’s take
T
Z Pzz qu gz z
f(z1 u) = (1/2) U Py Py qu
1 % @ T 1

with Puy >0, Py = Pg,
» minimizer of f over u satisfies
0=V.f(z,u) = Puu+ Pz + q

50 4 = — P! (Puwt + gu) is an affine function of

Affine and quadratic functions 17



Partial minimization of a quadratic

» substituting u into expression for f gives

T
z Pa:a: _Pa:uP_IPua: Qz _Pa:uP_IQu
g(z) = 1/2 im _uu
() (/)|:1:| |: qu_qg’PuulPuE 7’_quljuulqu

» Py — PuPgl Py is the Schur complement of P w.r.t. u
» Py — Py Py!Pye >0if P >0

» or simpler: g is composition of f with affine function z — (z, u)

T _ I s 4 0
v | | —PalPuw —Plqu

> we already know how to form composition quadratic (affine)

> and the result is convex

Affine and quadratic functions
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Summary

convex quadratics are closed under

» addition

> expectation

» pre-composition with an affine function
» partial minimization

in each case, we can explicitly compute the coefficients of the result using
linear algebra

Affine and quadratic functions
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(Random) linear dynamical system

> dynamics 241 = fi(zs, we, we) = Ae(wi)ze + Be(we)us + ce(we)
» for each wy, fi is affine in (z¢, u¢)

> o, Wo, Wi, ... are independent

> Ai(w:) € R™*™ is dynamics matrix

> Bi(w:) € R™™™ is input matrix

> c:(w:) € R™ is offset

Linear quadratic Markov decision process
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Linear quadratic stochastic control problem

> stage cost g¢(z¢, ue, W) is convex quadratic in (z¢, u;) for each wy

» choose policy u: = p¢(z:) to minimize objective

T-1

J=E Z ge(zt, ue, we) + gr(zr)

t=0

Linear quadratic Markov decision process
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Dynamic programming

> set Vr(z) = gr(z)
» fort=T-1,...,0,

/J't(m) € argmin, E (gt(x, U, wt) + Vit (ft(mr u, wt)))
Vi(z) = E(g:(z, pe(z), we) + Vipr(fe(z, pe(z), we)))

» all V; are convex quadratic, and all y; are affine

» this gives value functions and optimal policy, explicitly

Linear quadratic Markov decision process
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Dynamic programming

we show Vi are convex quadratic by (backward) induction

v

suppose Vr,..., Viy1 are convex quadratic

» since f; is affine in (z, v), Viy1(fi(z, u, we)) is convex quadratic

> so gi(z, u, we) + Vig1(fi(z, u, we)) is convex quadratic

» and so is its expectation over w;

» partial minimization over u leaves convex quadratic of z, which is Vi(z)

» argmin is affine function of z, so optimal policy is affine

Linear quadratic Markov decision process
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Linear equality constraints

» can add (deterministic) linear equality constraints on z:, u; into g¢, gr:

0 Ft$+ GtuZ ht

__ _quad
gr(z,u,w) = g7 " (z,u,w) + { oo otherwise

» everything still works:
> V: is convex quadratic, possibly with equality constraints
> u¢ is affine

» reason: minimizing a convex quadratic over some variables, subject to
equality constraints, yields a convex quadratic in remaining variables

Linear quadratic Markov decision process
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Infinite horizon linear quadratic problems

> consider average stage cost problems (others are similar)
with time-invariant dynamics and stage costs

» same as for finite state case: use value iteration
» set Vo(z) =0; for k =0,1,...,

pi+1(z) = argmin, E (g(z, u, w) + Vi(f(z, u, wt)))
Vit1(z) = E (g(z, prt1(z), we) + Vi(f (2, prt1(z), we)))

» can be carried out concretely, since Vj is quadratic, uy is affine

Linear quadratic Markov decision process 26



Optimal steady-state policy

» ur — u* (ITAP), a.k.a. steady-state policy p*(z) = K*z + I*
> K* (I*) called (steady-state, average cost) optimal gain matrix (offset)

> Vi(z) — Vi(z') = V™!(z), relative value function (ITAP)
> 2’ is (arbitrary) reference state

» Vel defined only up to a constant

> Viti(z) — Vi(z) — J*, the optimal average cost, for any z
g

Linear quadratic Markov decision process
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Linear quadratic regulator

> zi11 = Atz + Brug + wy
» Ew; =0, Ewgwl = W,
> stage cost is (convex quadratic)
(1/2)(z" Qeze + u,” Reur)
with @ >0, Rt >0
> terminal cost (1/2)zf Qrzr, Qr > 0

» variation: terminal constraint z7 =0

Linear quadratic regulator
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Linear quadratic regulator: DP

» value functions are quadratic plus constant (linear terms are zero):
Vi(z) = (1/2)(z" Pez + 7t)

» Pr=Qr, 77 =0

» optimal expected tail cost:

E Viti(fi(z, v, wt))
= (1/2)(Tt+1 =+ E(Ata: + Biu + wt)TPt+1(Atm + Biu + wt))
= (1/2)(7't+1 -+ (At.’l,‘ =+ Bt'u,)TPt+1(At:C =+ Btu) -+ ’I‘I‘(PtJrl Wt))

using Ew; =0 and

E thPt+1 Wt = ErI‘I'(PH_l wtth) = rI‘I‘(PH_]_ Wt)
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Linear quadratic regulator: DP

» minimize over u to get optimal policy:
ut(z) = argmin (uTRtu +uTBlPy1 Biu + 2(BtTPt+1Ata:)Tu)
= - (Rt + BtTPt+1Bt)_1 BtTPt-HAtiE
= Kz
» optimal policy is linear (as opposed to affine)
» using v = K;z we then have

Vi(z) = (1/2)(re41 + Te(Peya We) + 27 (Q: + K" Re Ki)z+
T (At + BiKi) T Piy1 (At + BeKy)z)

» so coefficients of V; are

P = Q¢+ KtTRth + (A: + Bth)TPt-H(At + B:Ky),
1t = re41 + Tr(Pryr W)

Linear quadratic regulator
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Linear quadratic regulator: Riccati recursion

v

setPT:QT
» fort=T-1,...,0

Ki = —(Re+ BtTPt+lBt)_lBtTPt+1At
Py = Qi+ KtTRth + (A: + Bth)TPt_H(At + BiKy)

v

called Riccati recursion; gives optimal policies, which are linear functions

» surprise: optimal policy does not depend on the disturbance distribution
(provided it is zero mean)

v

J* = (1/2)(Tr(PoXo) + 3., Tr(Pey1 We)), where Xo = E(zozd' )

Linear quadratic regulator
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Linear quadratic regulator: Example

» n =5 states, m = 2 inputs, horizon T = 31

v

A, B chosen randomly; A scaled so max; |A;(4)] =1

v

Q=1 R =It=0,...,T—1, Qr =5I

v

Zo N./\[(O,Xo), Xo =1

v

we ~ N0, W), W = 0.11

Linear quadratic regulator
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Linear quadratic regulator: Example

left: (Kt)u, (Kt)21 vs. t;
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Linear quadratic regulator: Sample trajectory

Linear quadratic regulator
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Linear quadratic regulator: Cost comparison

compare cost for

» optimal policy, J*

» prescient policy, JP*®: wp ..., wr known in advance

> open loop policy, J°: choose uo, ..., ur with knowledge of zy only
» no control (1-step greedy), J™°: ug,...,ur =0

Linear quadratic regulator
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Linear quadratic regulator: Cost comparison

total stage cost histograms, N = 5000 Monte Carlo simulations
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Steady-state linear quadratic regulator

> average cost case, all data time-invariant

> use Riccati recursion to find steady-state (average cost) optimal policy:

Kiy1 = —(R+B"PB) 'B"P.A
Piyi = Q-+ Kiy1RKiy1+ (A+ BKji1)" Pi(A+ BKji1)

» K, — K™, steady-state (average cost) optimal gain: p*(z) = K*z

v

(1/2)zT Prz — V™!(z) with reference state z' =0

v

(1/2) Tr(Px W) — J*, optimal average stage cost

Linear quadratic regulator
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Linear quadratic trading: Dynamics

> zi1 = fi(@e, ur, pr) = diag(pe)(z: + ut)

» z; € R" is dollar amount of holding in n assets

> (z¢); < 0 means short position in asset ¢ in period t

» u; € R" is dollar amount of each asset bought at beginning of period ¢
> (u¢)i < 0 means asset ¢ is sold in period ¢

> ;" = z; + us is post-trade portfolio

> p: € R}, is (random) return of assets over period (¢, ¢+ 1]

» returns independent, with E p; = p,, E p1pf = 3:

Linear quadratic trading
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Linear quadratic trading: Stage cost

stage cost for t = 0,..., T — 1 is (convex quadratic)
ge(,u) = 17w+ (1/2)(x7 v* + 1(z + v)" Qi(z + u))
with @ > 0
» first term is gross cash in
» second term is quadratic transaction cost (square is elementwise; x; > 0)
> third term is risk (variance of post-trade portfolio for Q; = 3 — p,p; )
» 7 > 0 is risk aversion parameter

» minimizing total stage cost equivalent to maximizing (risk-penalized) net
cash taken from portfolio

Linear quadratic trading 41



Linear quadratic trading: Terminal cost

> terminal cost: gr(z) = —17z 4+ (1/2)k%z?, kr >0

» this is net cash in if we close out (liquidate) final positions, with
quadratic transaction cost

Linear quadratic trading
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Linear quadratic trading: DP

» value functions quadratic (including linear and constant terms):
Vi(z) = (1/2)(z" Piz + 2¢ ¢ + 7¢)
» we'll need formula
E(diag(p:) P diag(pt)) = P o &
where o is Hadamard (element-wise) product
» optimal expected tail cost

E Visi(fi(z, ¢, pt)) = E Viga (diag(p:)z™)
= (1/2)((z%)" Pey1 0 Bez™ + 29/, diag(p,)z ™t + 1)

Linear quadratic trading
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Linear quadratic trading: DP

» Pr = diag(K,T), qr = -1, rr =0

» recall Vi(z) = min, E (g¢(z, u) + Vip1(diag(p:)(z + u)))

» fort =T —1,...,0 we minimize over u to get optimal policy:
ut(z) = argmin, (uT(St_;,_l + diag(k¢))u + 2(Se12 + se41 + 1)Tu)
= —(St+1+ diag(ﬁt))_l(st+113 + st41+ 1)
= Kiz+ 1
where

Stt1 = Pry1 02 + 7@y, St+1 = Py © Qi1

» using v = Kiz + l; we then have

Sir1(I + Kt) st41 + Styale z
siv1 + U Serr e + (Sep1 + 1) 7k 1

Vi(e) = (1/2) [ 1 ] {
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Linear quadratic trading: Value iteration

> set Pr = diag(kr), gr =—1, 77 =0

» fort=T-1,...,0

Ki = —(Siy1+diag(kt)) ' Siqa
b = —(Se+1 +diag(ke)) *(set1 + 1)
Py = Sip(I+Ky)
g = Sty1+ Serale
e = rer+ (s + 1)

where
St+1 = Piy1 05 + 7@, St4+1 = Py O Gt41

» optimal policy: uf(z) = Kiz + &k
> can write as uj(z) = Ki(z — 2f*), 2/ = —K, "l. = — S (st31 + 1)

» J* = E Vo(x)
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Linear quadratic trading: Numerical instance

» n = 30 assets over T' = 100 time-steps

» initial portfolio zop = 0

»p,=p, Ot =Xfort=0,...,T—1

> Q=% —pp  fort=0,...,T—1

» asset returns log-normal, expected returns range over +£3% per period
» asset return standard deviations range from 0.4% to 9.8%

» asset correlations range from —0.3 to 0.8

Linear quadratic trading
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Linear quadratic trading: Numerical instance

>

v

cost

ran N = 100 Monte Carlo simulations

J* = Vo(zo) = —237.5 (Monte Carlo estimate: —238.4)

left: stage cost; right: cumulative stage cost

exact (red), MC estimate (blue), and

cumul cost
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Linear quadratic trading: Numerical instance

we define zr411 = 0, i.e., we close out the position during period T
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