EE365: Risk Averse Control

Risk averse optimization

Exponential risk aversion

Outline

Risk averse optimization

Exponential risk aversion

Risk averse control

Risk averse optimization

Risk measures

- suppose f is a random variable we'd like to be small (*i.e.*, an objective or cost)
- E f gives average or mean value
- many ways to quantify risk (of a large value of f)
 - $\mathbf{Prob}(f \ge f^{\mathsf{bad}})$ (value-at-risk, VAR)
 - $E(f f^{bad})_+$ (conditional value-at-risk, CVAR)
 - $\operatorname{var} f = \mathbf{E}(f \mathbf{E}f)^2$ (variance)
 - $\mathbf{E}(f \mathbf{E}f)^2_+$ (downside variance)
 - $\mathbf{E} \phi(f)$, where ϕ is increasing and convex (when large f is good: expected utility $\mathbf{E} U(f)$ with increasing concave utility function U)
- ▶ risk aversion: we want Ef small and low risk

Risk averse optimization

- now suppose random cost f(x, ω) is a function of a decision variable x and a random variable ω
- different choices of x lead to different values of mean cost $\mathbf{E} f(x, \omega)$ and risk $R(f(x, \omega))$
- ▶ there is typically a trade-off between minimizing mean cost and risk
- ▶ standard approach: minimize $\mathbf{E} f(x, \omega) + \lambda R(f(x, \omega))$
 - $\mathbf{E} f(x, \omega) + \lambda R(f(x, \omega))$ is the risk-adjusted mean cost
 - $\lambda > 0$ is called the **risk aversion parameter**
 - ▶ varying λ over $(0,\infty)$ gives trade-off of mean cost and risk
- mean-variance optimization: choose x to minimize $\mathbf{E} f(x, \omega) + \lambda \operatorname{var} f(x, \omega)$

Example: Stochastic shortest path

- ▶ find path in directed graph from vertex A to vertex B
- edge weights are independent random variables with known distributions
- commit to path beforehand, with no knowledge of weight values
- ▶ path length L is random variable
- minimize $\mathbf{E} L + \lambda \mathbf{var} L$, with $\lambda \geq 0$
- ▶ for fixed λ , reduces to deterministic shortest path problem with edge weights $\mathbf{E} \ w_e + \lambda \ \mathbf{var} \ w_e$

- find path from vertex A = 1 to vertex B = 8
- edge weights are lognormally distributed
- edges labeled with mean and variance: $(\mathbf{E} w_e, \mathbf{var} w_e)$

Risk averse optimization

 $\lambda = 0$: **E** L = 30, **var** L = 400

 $\lambda = 0.05$: **E** L = 35, **var** L = 100

 $\lambda = 10$: **E** L = 40, **var** L = 25

trade-off curve: $\lambda = 0$, $\lambda = 0.05$, $\lambda = 10$

Risk averse optimization

distribution of L: $\lambda = 0$, $\lambda = 0.05$, $\lambda = 10$

Risk averse optimization

- \blacktriangleright choose portfolio $x \in \mathbf{R}^n$
 - x_i is amount of asset *i* held (short position when $x_i < 0$)
- ▶ (random) asset return $r \in \mathbf{R}^n$ has known mean $\mathbf{E} r = \mu$, covariance $\mathbf{E} (r \mu)(r \mu)^T = \Sigma$
- portfolio return is (random variable) $R = r^T x$
 - mean return is $\mathbf{E} R = \mu^T x$
 - return variance is $\mathbf{var} R = x^T \Sigma x$
- maximize $\mathbf{E} R \gamma \operatorname{var} R = \mu^T x \gamma x^T \Sigma x$, 'risk adjusted (mean) return'
- $\gamma > 0$ is risk aversion parameter

Risk averse optimization

can add constraints such as

- $\mathbf{1}^T x = 1$ (budget constraint)
- $x \ge 0$ (long positions only)
- can be solved as a (convex) quadratic program (QP)

 $\begin{array}{ll} \text{maximize} & \mu^T x - \gamma x^T \Sigma x \\ \text{subject to} & \mathbf{1}^T x = 1, \quad x \geq 0 \end{array}$

(or analytically without long-only constraint)

 \blacktriangleright varying γ gives trade-off of mean return and risk

numerical example: n = 30, $r \sim \mathcal{N}(\mu, \Sigma)$ trade-off curve: $\gamma = 10^{-2}$, $\gamma = 10^{-1}$, $\gamma = 1$

Risk averse optimization

numerical example: n = 30, $r \sim \mathcal{N}(\mu, \Sigma)$ distribution of portfolio return: $\gamma = 10^{-2}$, $\gamma = 10^{-1}$, $\gamma = 1$

Risk averse optimization

Outline

Risk averse optimization

Exponential risk aversion

Risk averse control

Exponential risk aversion

Exponential risk aversion

- suppose f is a random variable
- \blacktriangleright exponential risk measure, with parameter $\gamma >$ 0, is given by

$$R_{\gamma}(f) = rac{1}{\gamma} \log \left(\mathbf{E} \exp(\gamma f)
ight)$$

 $(R_\gamma(f)=\infty ext{ if } f ext{ is heavy-tailed})$

- $\exp(\gamma f)$ term emphasizes large values of f
- $R_{\gamma}(f)$ is (up to a factor of γ) the cumulant generating function of f
- we have

$$R_{\gamma}(f) = \mathbf{E} f + (\gamma/2) \operatorname{var} f + o(\gamma)$$

▶ so minimizing exponential risk is (approximately) mean-variance optimization, with risk aversion parameter $\gamma/2$

Exponential risk expansion

▶ use exp u = 1 + u + u²/2 + ··· to write E exp(γf) = 1 + γ E f + (γ²/2) E f² + ···
▶ use log(1 + u) = u - u²/2 + ··· to write log E exp(γf) = γ E f + (γ²/2) E f² - (1/2) (γ E f + (γ²/2))² + ···
▶ expand square, drop γ³ and higher order terms to get log E exp(γf) = γ E f + (γ²/2) E f² - (γ²/2)(E f)² + ···

divide by γ to get

$$R_{\gamma}(f) = \mathbf{E} f + (\gamma/2) \operatorname{var} f + o(\gamma)$$

Exponential risk aversion

Properties

- $R_{\gamma}(f) = \mathbf{E} f + (\gamma/2) \mathbf{var} f$ for f normal
- $R_{\gamma}(a+f) = a + R_{\gamma}(f)$ for deterministic a
- R_γ(f) can be thought of as a variance adjusted mean, but in fact it's probably closer to what you really want (e.g., it penalizes deviations above the mean more than deviations below)
- \blacktriangleright monotonicity: if $f \leq g$, then $R_\gamma(f) \leq R_\gamma(g)$
- can extend idea to conditional expectation:

$$R_{\gamma}(f \mid g) = rac{1}{\gamma} \log \mathbf{E}(\exp(\gamma f) \mid g)$$

Value at risk bound

exponential risk gives an upper bound on VaR (value at risk)

• indicator function of
$$f \ge f^{\text{bad}}$$
 is $I^{\text{bad}}(f) = \begin{cases} 0 & f < f^{\text{bad}} \\ 1 & f \ge f^{\text{bad}} \end{cases}$

•
$$\mathbf{E} I^{\mathrm{bad}}(f) = \mathbf{Prob}(f \ge f^{\mathrm{bad}})$$

▶ for
$$\gamma > 0$$
, $\exp \gamma(f - f^{\text{bad}}) \ge I^{\text{bad}}(f)$ (for all f)

• so
$$\mathbf{E} \exp \gamma(f - f^{\mathrm{bad}}) \geq \mathbf{E} I^{\mathrm{bad}}(f)$$

▶ hence

$$\mathbf{Prob}(f \ge f^{\mathrm{bad}}) \le \exp \gamma(R_{\gamma}(f) - f^{\mathrm{bad}})$$

Outline

Risk averse optimization

Exponential risk aversion

Risk averse control

Risk averse stochastic control

- ▶ dynamics: $x_{t+1} = f_t(x_t, u_t, w_t)$, with x_0, w_0, w_1, \ldots independent
- ▶ state feedback policy: $u_t = \phi_t(x_t), \ t = 0, \dots, \ T-1$
- risk averse objective:

$$J = rac{1}{\gamma} \log \mathbf{E} \exp \gamma \left(\sum_{t=0}^{T-1} g_t(x_t,\, u_t) + g_T(x_T)
ight)$$

- ▶ gt is stage cost; gT is terminal cost
- $\gamma > 0$ is risk aversion parameter
- ▶ risk averse stochastic control problem: find policy µ = (µ₀,...,µ_{T-1}) that minimizes J

Interpretation

total cost is random variable

$$C = \sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T)$$

- \blacktriangleright standard stochastic control minimizes $\mathbf{E} \ C$
- risk averse control minimizes $R_{\gamma}(C)$
- risk averse policy yields larger expected total cost than standard policy, but smaller risk

Risk averse value function

▶ we are to minimize

$$J=R_\gamma\left(\sum_{t=0}^{T-1}g_t(x_t,u_t)+g_T(x_T)
ight)$$

over policies $\mu = (\mu_0, \ldots, \mu_{T-1})$

define value function

$$V_t(x) = \min_{\mu_t,\dots,\mu_{T-1}} R_\gamma \left(\sum_{ au=t}^{T-1} g_ au(x_ au,u_ au) + g_T(x_T) \; \middle| \; x_t = x
ight)$$

- $\blacktriangleright V_T(x) = g_T(x)$
- could minimize over input u_t , policies $\mu_{t+1}, \ldots, \mu_{T-1}$
- \blacktriangleright same as usual value function, but replace ${f E}$ with R_γ

Risk averse dynamic programming

▶ optimal policy μ^* is

$$\mu_t^\star(x) \in \operatorname*{argmin}_u \left(g_t(x, u) + R_\gamma V_{t+1}(f_t(x, u, w_t))
ight)$$

where expectation in R_γ is over w_t

$$V_t(x) = \min_u \left(g_t(x, u) + R_\gamma \, V_{t+1}(f_t(x, u, w_t))
ight)$$

▶ same as usual DP, but replace **E** with R_{γ} (both over w_t)

Multiplicative version

• precompute
$$h_t(x,u) = \exp \gamma g_t(x,u)$$

 \blacktriangleright instead of V_t , change variables $W_t(x) = \exp \gamma \, V_t(x)$

► DP recursion is

$$W_t(x) = \min_uig(h_t(x,u) \operatorname{\mathbf{E}} W_{t+1}(f_t(x,u,w_t))ig)$$

▶ optimal policy is

$$\mu_t^\star(x) \in \operatorname*{argmin}_uig(h_t(x,u) \to W_{t+1}(f_t(x,u,w_t))ig)$$

- must buy an item in one of T = 4 time periods
- ▶ prices are IID with $p_t \in \{1, \dots, 10\}$, $\mathbf{Prob}(p_t = p) \propto 0.95^p$
- ▶ in each time period, the price is revealed and you choose to buy or wait
 - once you've bought the item, your only option is to wait
 - in the last period, you must buy the item if you haven't already

optimal policy: wait, buy

purchase if price is below threshold: $\gamma
ightarrow 0, \ \gamma = 1, \ \gamma = 2$

trade-off curve: $\gamma \rightarrow 0$, $\gamma = 1$, $\gamma = 2$

distribution of purchase price: $\gamma \rightarrow 0, \ \gamma = 1, \ \gamma = 2$

