Embedded Convex Optimization with CVXPY

Nicholas Moehle, Jacob Mattingley, Stephen Boyd

Stanford University

February 2018
Outline

Convex optimization

Embedded convex optimization

DSLs for embedded convex optimization

Examples
optimization problem:

\[
\begin{align*}
\text{minimize} & \quad f_0(x; \theta) \\
\text{subject to} & \quad f_i(x; \theta) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

- decision variable \(x \) (a vector)
- objective function \(f_0 \)
- constraint functions \(f_i \), for \(i = 1, \ldots, m \)
- parameter(s) \(\theta \)

the solution \(x^* \) minimizes the objective over all vectors satisfying the constraints.
Convex optimization

- all f_i are convex (have nonnegative curvature)
- includes least-squares, linear/quadratic programming, …
- can obtain global solution quickly and reliably
- mature software available (open source and commercial)
Domain-specific languages for convex optimization

- used to specify (and solve) convex problems
- problem constructed out of:
 - variables
 - constants
 - parameters (value fixed at solve time, may change between solves)
 - functions from a library
- specified problem mapped to a solver format (e.g., conic form)
- makes prototyping easier
- DSLs include CVXPY, CVX, Convex.jl, YALMIP, ...
Example: actuator allocation

- $u \in \mathbb{R}^m$ are actuator values
- generate force $f^{\text{des}} \in \mathbb{R}^n$ according to $f^{\text{des}} = Au$
- A depends on system configuration (e.g., joint angles)
- want u small, near previous value u^{prev}
- actuator limits $u^{\text{min}} \leq u \leq u^{\text{max}}$

Convex optimization
Actuator allocation problem

\[
\begin{align*}
\text{minimize} & \quad \|u\|_1 + \lambda \|u - u^{\text{prev}}\|_2^2 \\
\text{subject to} & \quad Au = f^{\text{des}} \\
& \quad u^{\text{min}} \leq u \leq u^{\text{max}}
\end{align*}
\]

- variable is \(u \)
- constants are \(u^{\text{min}}, u^{\text{max}}, \lambda > 0 \)
- parameters are \(A, f^{\text{des}}, u^{\text{prev}} \)
CVXPY code:

```python
u = Variable(10)
A = Parameter((6, 10), value=A_val)
f_des = Parameter(6, value=f_val)
u_prev = Parameter(10, value=u_val)

prob = Problem(Minimize(norm(u, 1)
                + lambda*sum_square(u - u_des),
                [A*u == f_des, u_min <= u, u <= u_max])
prob.solve()
```
Under the hood: canonicalization

CVXPY transforms original problem

\[
\begin{align*}
\text{minimize} \quad & \|u\|_1 + \lambda \|u - u^{\text{prev}}\|_2^2 \\
\text{subject to} \quad & Au = f^{\text{des}} \\
& u^{\text{min}} \leq u \leq u^{\text{max}}
\end{align*}
\]

into equivalent standard-form QP:

\[
\begin{align*}
\text{minimize} \quad & \begin{bmatrix} u \\ t \end{bmatrix}^T \begin{bmatrix} \lambda I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ t \end{bmatrix} \begin{bmatrix} -2\lambda u^{\text{prev}} \\ 1 \end{bmatrix}^T \begin{bmatrix} u \\ t \end{bmatrix} \\
\text{subject to} \quad & \begin{bmatrix} A & 0 \end{bmatrix} \begin{bmatrix} u \\ t \end{bmatrix} = f^{\text{des}} \\
& \begin{bmatrix} I & 0 \\ -I & 0 \\ I & -I \\ -I & -I \end{bmatrix} \begin{bmatrix} u \\ t \end{bmatrix} \preceq \begin{bmatrix} u^{\text{max}} \\ -u^{\text{min}} \\ 0 \\ 0 \end{bmatrix}
\end{align*}
\]

with variable \((u, t) \in \mathbb{R}^{2m}\)
Outline

Convex optimization

Embedded convex optimization

DSLs for embedded convex optimization

Examples
Embedded convex optimization

- solve same problem many times, using different parameter values
- real-time deadlines (milliseconds, microseconds)
- small software footprint
- extreme reliability
- no babysitting
Embedded optimization applications

- automatic control
 - actuator allocation
 - model predictive control
 - trajectory generation
- signal processing
 - moving-horizon estimation
- energy
 - battery management
 - hybrid vehicle control
 - HVAC control
- finance
 - quantitative trading
Embedded convex optimization solvers

- a solver maps parameters to solution (for a specific problem family)
- some (open-source) examples:
 - ECOS (2013)
 - qpOASES (2014)
 - OSQP (2016)
- typically written in C or C++
- special attention to memory allocation, division, ...
- solve one problem repeatedly with different parameters
 - symbolic step, followed by numerical step (ECOS, OSQP)
 - factorization caching (OSQP)
Outline

Convex optimization

Embedded convex optimization

DSLs for embedded convex optimization

Examples
DSLs for embedded convex optimization

- parse a parametrized problem, generate a custom solver

- can re-solve problem with new parameters
- problem structure fixed (including parameter size)
- solver code optimized during code generation
what can we pre-compute?

- reduction to standard form (canonicalization)
- sparsity patterns of problem data
- efficient permutation for sparse matrix factorization
- factorization fill-in
- in some cases, can cache matrix factorizations

for small–medium problems, saved overhead is (very) significant
CVXGEN

- Mattingley, Boyd (2012)
- code generation for quadratic programs
- generates library-free C source
- built-in backend solver (interior point method)
- explicit coding style
 - very fast for small problems
 - code size scales poorly past a few thousand scalar parameters
- used in industry, e.g., SpaceX
CVXPY-codegen

- Moehle, Boyd
- Python-based (an extension of CVXPY)
- generates library-free, embedded C source
- interchangeable backend solvers:
 - ECOS (interior point)
 - OSQP (ADMM), soon
- code size / runtime scale gracefully with problem description size
 - (but slower than CVXGEN for very small problems)
- open source
- makes Python interface for generated solver
parametrized problem

\[
\begin{align*}
\text{minimize} \quad & f_0(x; \theta) \\
\text{subject to} \quad & f_i(x; \theta) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

converted to a QP:

\[
\begin{align*}
\text{minimize} \quad & z^T P(\theta) z + q(\theta)^T z \\
\text{subject to} \quad & A(\theta) z + b(\theta) \geq 0
\end{align*}
\]

- z is (augmented) decision variable
- P, q, A, and b depend on parameters
- solution x^* recovered from z^*
- canonicalization step during code generation
- (conversion to conic problems is similar)
Storing P, q, A, and b in CVXGEN

- $P(\theta)$, $q(\theta)$, $A(\theta)$, and $b(\theta)$ must be updated before each solve
- CVXGEN uses an explicit style:

```matlab
```

- fast, but limits CVXGEN to small problems
or, store $A(\theta)z + b(\theta)$ as an affine parse tree:

\[
\begin{align*}
\ldots & \quad + \\
\quad & \quad - \\
& \quad \times \\
& \quad \quad + \\
& \quad \quad \quad [3:5] \\
& \quad \quad \quad - \\
& \quad \quad h \\
& \quad \quad F \\
& \quad \quad z \\
& \quad \quad g
\end{align*}
\]

for $F(z_{[3:5]} - g) - h$

- $P(\theta)$ and $q(\theta)$ represented similarly
Affine parse tree in CVXPY-codegen

- each subtree is an affine function
 - recursively walk the tree to build $A(\theta)$ and $b(\theta)$
 - at each node, carry out operation directly on subtree coefficients

- recursion is unwrapped in generated code:
  ```
  neg(param_h, node1_offset);
  index_coeff(var_z, node1_var_z);
  neg(param_g, node2_offset);
  matmul(param_F, node1_var_z, node3_var_z);
  matmul(param_F, node2_offset, node3_offset);
  sum(node1_offset, node3_offset);
  ```

- sparsity patterns fixed during code generation
- better scalability than explicit methods; still fast for small problems
C code structure

structure of generated code:

1. `init()`: initializes backend solver, allocate solver memory (if needed)
2. `solve()`: takes in parameters, solves problem
3. `cleanup()`: frees solver memory

practical usage: `init` once, then `solve` many times in a loop
Outline

Convex optimization

Embedded convex optimization

DSLs for embedded convex optimization

Examples
Actuator allocation: code generation

\[
\begin{align*}
\text{minimize} & \quad \|u\|_1 + \lambda \|u - u^{prev}\|_2^2 \\
\text{subject to} & \quad Au = f_{\text{des}} \\
& \quad u_{\text{min}} \leq u \leq u_{\text{max}}
\end{align*}
\]

Python code:

```python
u = Variable(10, name='u')
A = Parameter((6, 10), name='A')
f_des = Parameter(6, name='f_des')
u_prev = Parameter(10, name='u_prev')

prob = Problem(Minimize(norm(u, 1)
+ lambda*sum_square(u - u_des),
[A*u == f_des, u_min <= u, u <= u_max])
codegen(prob, 'target_directory')
```

Examples
Actuator allocation: generated code

```c
typedef struct params_struct{
    double A[6][10];
    double f_des[6];
    double u_prev[10];
} Params;

typedef struct vars_struct{
    double u[10];
} Vars;

typedef struct work_struct{
    ...
} Work;

void cg_init(Work *work);
int cg_solve(Params *params, Work *work, Vars *vars);
void cg_cleanup(Work *work);
```
Actuator allocation: usage example

usage example:

```c
int main(){
    Params params;
    Vars vars;
    Work work;
    cg_init(&work); // Initialize solver.

    while(1){
        update_params(&params); // Get new data, update parameters.
        cg_solve(&params, &work, &vars); // Solve problem.
        implement_vars(&vars); // Implement the solution.
    }
}
```
Actuator allocation: results

CVXPY-codegen (with ECOS):
- solve time: 200 μs (ECOS is > 95 % of this)
- memory usage: 23 kB
- code size: 80 kB
Model predictive control

- control the linear dynamical system

\[x_{t+1} = Ax_t + Bu_t \]

over \(T \) time periods

- input constraints \(\|u_t\|_\infty \leq u_{\text{max}} \)

- problem is:

\[
\begin{align*}
\text{minimize} & \quad \sum_{t=0}^{T-1} \|x_t\|_2^2 + \|u_t\|_2^2 \\
\text{subject to} & \quad x_{t+1} = Ax_t + Bu_t, \quad t = 0, \ldots, T - 1 \\
& \quad \|u_t\|_{\infty} \leq u_{\text{max}}, \quad t = 0, \ldots, T - 1 \\
& \quad x_0 = x_{\text{init}} \\
& \quad x_T = 0
\end{align*}
\]
Model predictive control: Python code

A = Parameter((n, n), name='A')
B = Parameter((n, m), name='B')
x0 = Parameter(n, name='x0')
u_max = Parameter(name='u_max')
x = Variable((n, T+1), name='x')
u = Variable((m, T), name='u')

obj = 0
constr = [x[:,0] == x0, x[:,-1] == 0]
for t in range(T):
 constr += [x[:,t+1] == A*x[:,t] + B*u[:,t],
 norm(u[:,t], 'inf') <= u_max]
 obj += sum_squares(x[:,t]) + sum_squares(u[:,t])

prob = Problem(Minimize(obj), constr)
codegen(prob, 'target_directory')
Model predictive control: solve times

- inputs, states, and horizon in ratio 1 : 2 : 5
- backend solver for CVXPY-codegen was ECOS
Other problems

Solve times for other problems (in milliseconds)

<table>
<thead>
<tr>
<th>problem</th>
<th>CVXGEN</th>
<th>CVXPY-cg</th>
<th>CVXPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>battery1</td>
<td>0.303</td>
<td>1.46</td>
<td>509</td>
</tr>
<tr>
<td>battery2</td>
<td>1.52</td>
<td>4.50</td>
<td>3112</td>
</tr>
<tr>
<td>battery3</td>
<td>—</td>
<td>61.5</td>
<td>55591</td>
</tr>
<tr>
<td>portfolio1</td>
<td>0.342</td>
<td>1.099</td>
<td>61.6</td>
</tr>
<tr>
<td>portfolio2</td>
<td>1.127</td>
<td>2.684</td>
<td>62.9</td>
</tr>
<tr>
<td>portfolio3</td>
<td>—</td>
<td>79.8</td>
<td>152.9</td>
</tr>
<tr>
<td>lasso1</td>
<td>0.136</td>
<td>1.40</td>
<td>44.4</td>
</tr>
<tr>
<td>lasso2</td>
<td>—</td>
<td>10.51</td>
<td>73.3</td>
</tr>
<tr>
<td>lasso3</td>
<td>—</td>
<td>52.37</td>
<td>185.4</td>
</tr>
</tbody>
</table>
Conclusion

- DSLs make (embedded) convex optimization easy to use
- convex optimization for real-time applications
- automatic code generation makes deployment easy