Control of Electric Motors and Drives
via Convex Optimization

Nicholas Moehle

Advisor: Stephen Boyd

February 5, 2018



Outline

1. waveform design for electric motors

— permanent magnet
— induction

2. control of switched-mode converters



Waveform design for electric motors

» traditionally:
— AC motors driven by sinusoidal inputs (and designed for this)*
— based on reference frame theory, c. 1930

> now:

— more computational power
— power electronics can generate near-arbitrary drive waveforms?

» our questions:
— given a motor, how to design waveforms to drive it?
— which waveform design problems are tractable? convex?

Hendershot, Miller. Design of Brushless Permanent-Magnet Machines. 1994.
2Wildi. Electrical Machines, Drives and Power Systems. 2006.



Motor model

» n windings, each with an RL circuit.
» electrical variables:

— voltage v(t) € R”

— current i(t) € R®

— flux A(t) € R



Motor model
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> the rotor has
— torque 7(¢)
— speed w = const. (high inertia mech. load)
— position 8(t) = wt

» goal is to manipulate v to control T
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Stored energy

stored magnetic energy is E(A, 6)
— magnetic coupling depends on mechanical position

E is 2m-periodic in 6

inductance equation relates current and flux:

1= V\E()6)
torque given by
0
T= —%E()\,e)

in general, both are nonlinear in A



» the average torque is:

» torque ripple is

Torque



Power loss
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» R € S’ is the (diagonal) resistance matrix
> resistive power loss is 1T Ri

» average power loss is



Circuit dynamics
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» dynamics from Kirchoff's voltage law, Faraday's law:
v(t) = Ri(t) + At)

» dynamics coupled across windings by inductance equation
1= VAE()6).
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Winding connection
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often, winding voltages v not controlled directly
(e.g., wye/delta windings, windings contained in rotor)
indirect control through terminal voltages u(t) € R™

Ci(t) =0,  wv(t) = CTe(t) + Bu(t),

C € RP*™ is the connection topology matrix
B € R™™ is the voltage input matrix
e(t) € RP are floating node voltages



Winding connection examples

u; U1 U1
U1 U1
Ul/ \Uz VU3 &)
2 0 3
Uo Uz ,/1,2 Uz ,/1,2
U3 U3z U3

Ci(t) =0,  w(t) = CTe(t) + Bu(t),

» simple delta, wye, and independent winding connections
» some windings may be controlled only through induction

— e.g., windings on the rotor
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Optimal waveform design

» waveform design problem:

minimize  Pjoss + YT

subject to T = Tges,
torque equation
inductance equation
circuit dynamics
winding pattern

> variables are 7, v, u, e, A, 7 (all functions on R})
» problem data:

tradeoff parameter v > 0

resistance matrix R € S

energy function E : R™ x Ry — R4

shaft speed w € R

desired torque Tges € R

winding connection parameters B € R**™ and C € RP*"
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> nonconvex in general, due to nonlinear torque and inductance
equations
» problem data 2m-periodic, but periodicity of solution not known
— in practice, solutions often not 2m-periodic in 6
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Permanent magnet motor

» magnets in rotor change magnetic flux through windings as they
pass, producing voltage across the windings

» by simultaneously pushing current through the windings, electrical
energy is extracted (or injected)
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Permanent magnet motor

» energy function is quadratic:
E(),8) = ATAX 4+ b(6)T )

(quadratic part independent of rotor angle)

» inductance equation is linear:
A = Lt + Amag(6)

L is the inductance matrix, Amag is the flux due to rotor magnets

» torque equation is affine:
T =k(6)71 + Teog ()
k(8) is the motor constant, Tcog is the cogging torque
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Permanent magnet motor

» dynamics, with A, are
v(t) = Ri(t) + A(¢)
» eliminating A:

u(t) = Ri(t) + LZ—i(t) + wk(9)
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Permanent magnet motor, waveform design

> optimal waveform design problem is convex

» 2m-periodicity of problem data with convexity implies 2m-periodicity
of a solution, if one exists?

3Boyd, Vandenberghe. Convex Optimization, page 189. 2004
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Permanent magnet motor, waveform design

» waveform design problem:

power loss torque ripple
1 2T 2T
minimize 1(0)T Ri(6) db +7 5 / — Taes)?) df
subject to — / df = Tges av. torque)

(
T =k(6)Ti+ Tcog(e) (torque)
v(0) = Ri(0) + wLi'(8) + wk(8) (dynamics)
ci(6) = (winding conn.)
v(6) = CTe(6) + Bu(8) & conn-

> variables are 7, v, u, e, 7 (all functions on [0, 27])
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Permanent magnet motor, waveform design

v

a periodic linear-quadratic control problem
— can discretize, solve by least squares

v

in fact, many extensions retain convexity:
— voltage limits |u(0)| < Umax
— current limits |2(0)| < tmax
— nonquadratic definitions of torque ripple

> extensions typically involve solving a quadratic program

v

more discussion in paper*:
— extensions/variations
— custom fast solver — online waveform generation

“Moehle, Boyd. Optimal Current Waveforms for Brushless Permanent Magnet
Motors. 2015.
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Example

» v =2 W/Nm?
> left: w =300 rad/s, right: w =400 rad/s

i1 (A)
11 (A)

= i 5
0 100 200 300 [ 100

uy (V)

7 (Nm)
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Induction motor

» rotor magnets replaced by more windings, which act as
electromagnets (with current)

> rotor current produced my magnetic induction (using stator currents)
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Induction motor

» Energy function is again quadratic:
E(X,0) = ATA(B)A

quadratic part dependent on 8 (affine part omitted for simplicity)

» inductance equation is linear:
A = L(8)i
> torque is (indefinite) quadratic:

T=—iTL'(8)i
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Induction motor, maximum torque problem

» general waveform design problem intractable
» we focus on the maximum torque problem (y = 0):

— torque ripple penalty disappears
— maximize average torque (a nonconvex quadratic function)
— power loss constraint (a convex quadratic function)
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Induction motor, maximum torque problem

» waveform design problem:

average torque

T—oo T

IR .
maximize  lim —/ —i(t)T L' (wt)i(t) dt
0

1 T
subject to %Lngo ?/0 i(t)T Ri(t) dt < pross (power loss)
u(t) = Ri(t) + A(¢) (dynamics)
Ci(t) =0 .
o(t) = CTe(t) + Bu(t) (winding conn.)
A(t) = L(wt)e(t) (induction)

> variables are ¢, v, u, e, A (all functions on R})

» equivalent to minimizing pjoss With average torque constraint
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Induction motor, maximum torque problem

» can be converted to a nonconvex linear-quadratic control problem
with a quadratic constraint
— strong duality holds
— original proof due to Yakubovich®
> further details in our paper®

— equivalent semidefinite program (SDP)
— method for constructing optimal waveforms from SDP solution
— proof of tightness

5Yakubovich. Nonconvex optimization problem: The infinite-horizon linear-
quadratic control problem with quadratic constraints. 1992.

6Moehle, Boyd. Maximum Torque-per-Current Control of Induction Motors via
Semidefinite Programming. 2016.
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Example

traditional, sinusoidally wound, 5-phase motor with wye winding:

desired torque Tges = 5 Nm, speed w = 50 rad/s
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Example

j
3

o

PO OO AR S
2 1A%

14

=
z
~—  2F
=

é 1‘0 12
6 (rad)

power loss is 11 W per Nm torque produced



Stator fault

Same motor, with open-phase fault:
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Stator fault
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power loss is 14 W per Nm torque produced
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Outline

1. waveform design for electric motors

— permanent magnet
— induction

2. control of switched-mode converters
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Controlling switched-mode converters

> input are switch configurations
> traditionally:”

1. make discrete input continuous, by considering averaged switch

on-time (‘duty cycle’)

2. choose a duty cycle corresponding to desired equilibrium

3. linearize the resulting system around equilibrium, use linear control
> now:

— direct (switch-level) control

"Kassakian. Principles of power electronics. 1991.
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Switched-linear circuit
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state z; € R™ contains inductor currents, capacitor voltages
— can be augmented to contain, e.g., reference signal

» for each switch configuration, we have a linear circuit
» switched-affine dynamics:

$t+1:Auf;pt+but, tZO,].,...,

» dynamics specified by A%, b* in mode ¢

> control input is the mode u; € {1,..., K}

» may include mode restrictions (e.g., for a diode)
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Switched-affine control

switched-affine control problem is

minimize Z’f:l g(z¢)
subject to 1z = A%z + b*t
Lo = ZTinit
u € {1,...,K}
constraints hold for all ¢
variables are u; and z; € R"
problem data are dynamics A?, b?, function g, and initial condition
Tinit

can be solved by trying out K7 trajectories
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‘Solution’ via dynamic programming

Bellman recursion: find functions V; such that

V@)= min_g(a) + Vi (4% + )

forallz, fort=T-1,...,0
final value function Vpr = g
optimal problem value is Vo(@init) at initial state @init

in general, intractable to compute (or store) V;
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Model predictive control

> idea: solve switched-affine control problem, implement first control
action ug, measure new system state, and repeat

> called model predictive control (MPC) or receding horizon control

» given V = V3, MPC policy satisfies

¢mpc(z) € argmin V(A%z +b¥)
ue{l,...,.K}

(ties broken arbitrarily)
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Approximate dynamic programming policy

in practice, MPC policy only works for T' small
(system response time measured in us)

instead, approximate V' as a quadratic function V'
given V, ADP policy satisfies

¢aap(z) € argmin V(A¥z + b¥)
ue{l,...,.K}

evaluating ¢a.qp requires evaluating a few quadratic functions
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How to obtain V?

» quadratic lower bounds on V' can be found via semidefinite
programming®
» compute V(z(?) for many states z(¥, fit best quadratic function V'
— we used this method
— subproblems solved using methods described in paper®

> use exact value function for approximate linear control problem
(e.g., linear-quadratic control)

— provides a link to traditional methods

8Wang, O'Donoghue, Boyd. Approximate Dynamic Programming via Iterated
Bellman Inequalities. 2014.

9Moehle, Boyd. A Perspective-Based Convex Relaxation for Switched-Affine
Optimal Control. 2015.
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Inverter example
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state z; are inductor currents and capacitor voltages, and desired
output current phasors
cost function is deviation of output currents from desired
(sinusoidally-varying) values
model parameters V3. = 700V, L; = 6.5 uH, Ly = 1.5 uH, C =15
UF, Vicaa = 300 V, and desired output current amplitude Iges = 10
A.
sampling time 30 us
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Result

Policy State cost
ADP policy, 0.70
MPC policy, T =1 0
MPC policy, T =2 ()
MPC policy, T = 3 ()
MPC policy, T =4 ()

MPC policy, T = 5 0.45

» for T < 5 MPC policy is unstable
» running MPC with T' = 5 takes several seconds on PC

» ADP takes few hundred flops (can be carried out in us)
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Result

In steady state:
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Conclusions

> unconventional motors (asymmetrical, nonsinusoidally-wound,
non-rotary) can be controlled using optimization, by designing the
waveform to the motor

» modern techniques can be used to generate optimal controllers for
power electronic converters, which

— have fast response

— can easily incorporate constraints

are intuitive to understand and tune

make good use of modern microprocessor capabilities
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