Control of Electric Motors and Drives
via Convex Optimization

Nicholas Moehle

Advisor: Stephen Boyd

February 5, 2018
Outline

1. waveform design for electric motors
 - permanent magnet
 - induction
2. control of switched-mode converters
Waveform design for electric motors

traditionally:
- AC motors driven by sinusoidal inputs (and designed for this)\(^1\)
- based on reference frame theory, c. 1930

now:
- more computational power
- power electronics can generate near-arbitrary drive waveforms\(^2\)

our questions:
- given a motor, how to design waveforms to drive it?
- which waveform design problems are tractable? convex?

Motor model

- n windings, each with an RL circuit.

- Electrical variables:
 - Voltage $v(t) \in \mathbb{R}^n$
 - Current $i(t) \in \mathbb{R}^n$
 - Flux $\lambda(t) \in \mathbb{R}^n$
the rotor has

- torque $\tau(t)$
- speed $\omega = \text{const.}$ (high inertia mech. load)
- position $\theta(t) = \omega t$

goal is to manipulate ν to control τ
Stored energy

- stored magnetic energy is $E(\lambda, \theta)$
 - magnetic coupling depends on mechanical position
- E is 2π-periodic in θ
- inductance equation relates current and flux:
 \[
 i = \nabla_\lambda E(\lambda, \theta)
 \]
- torque given by
 \[
 \tau = -\frac{\partial}{\partial \theta} E(\lambda, \theta)
 \]
- in general, both are nonlinear in λ
Torque

- the average torque is:

\[\bar{\tau} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \tau(t) \, dt \]

- torque ripple is

\[r = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (\tau(t) - \bar{\tau})^2 \, dt \]
$R \in S_++^n$ is the (diagonal) resistance matrix

- resistive power loss is $i^T R i$
- average power loss is

$$\rho_{loss} = \lim_{T \to \infty} \frac{1}{T} \int_0^T i^T R i \, dt$$
Circuit dynamics

- dynamics from Kirchoff’s voltage law, Faraday’s law:

\[v(t) = Ri(t) + \dot{\lambda}(t) \]

- dynamics coupled across windings by inductance equation

\[i = \nabla_\lambda E(\lambda, \theta). \]
often, winding voltages v not controlled directly
(e.g., wye/delta windings, windings contained in rotor)
indirect control through terminal voltages $u(t) \in \mathbb{R}^m$

$$Ci(t) = 0, \quad v(t) = C^T e(t) + Bu(t),$$

$C \in \mathbb{R}^{p \times n}$ is the connection topology matrix
$B \in \mathbb{R}^{n \times m}$ is the voltage input matrix
$e(t) \in \mathbb{R}^p$ are floating node voltages
Winding connection examples

\[C_i(t) = 0, \quad v(t) = C^T e(t) + Bu(t), \]

- simple delta, wye, and independent winding connections
- some windings may be controlled only through induction
 - e.g., windings on the rotor
Optimal waveform design

- waveform design problem:

 minimize \(p_{\text{loss}} + \gamma r \)

 subject to \(\bar{\tau} = \tau_{\text{des}}, \)

 torque equation

 inductance equation

 circuit dynamics

 winding pattern

- variables are \(i, v, u, e, \lambda, \tau \) (all functions on \(\mathbb{R}_+ \))

- problem data:
 - tradeoff parameter \(\gamma \geq 0 \)
 - resistance matrix \(R \in S^{++}_n \)
 - energy function \(E : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}_+ \)
 - shaft speed \(\omega \in \mathbb{R} \)
 - desired torque \(\tau_{\text{des}} \in \mathbb{R} \)
 - winding connection parameters \(B \in \mathbb{R}^{n \times m} \) and \(C \in \mathbb{R}^{p \times n} \)
nonconvex in general, due to nonlinear torque and inductance equations

- problem data 2π-periodic, but periodicity of solution not known
 - in practice, solutions often *not* 2π-periodic in θ
Permanent magnet motor

- magnets in rotor change magnetic flux through windings as they pass, producing voltage across the windings
- by simultaneously pushing current through the windings, electrical energy is extracted (or injected)
Permanent magnet motor

- energy function is quadratic:

\[E(\lambda, \theta) = \lambda^T A \lambda + b(\theta)^T \lambda \]

(quadratic part independent of rotor angle)

- inductance equation is linear:

\[\lambda = L i + \lambda_{\text{mag}}(\theta) \]

\(L \) is the inductance matrix, \(\lambda_{\text{mag}} \) is the flux due to rotor magnets

- torque equation is affine:

\[\tau = k(\theta)^T i + \tau_{\text{cog}}(\theta) \]

\(k(\theta) \) is the motor constant, \(\tau_{\text{cog}} \) is the cogging torque
Permanent magnet motor

- dynamics, with λ, are

$$v(t) = Ri(t) + \dot{\lambda}(t)$$

- eliminating λ:

$$v(t) = Ri(t) + L \frac{di}{dt}(t) + \omega k(\theta)$$
Permanent magnet motor, waveform design

- optimal waveform design problem is convex
- 2π-periodicity of problem data with convexity implies 2π-periodicity of a solution, if one exists.\(^3\)

\(^3\)Boyd, Vandenberghe. *Convex Optimization*, page 189. 2004
Permanent magnet motor, waveform design

- waveform design problem:

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2\pi} \int_{0}^{2\pi} i(\theta)^T R i(\theta) \, d\theta + \gamma \frac{1}{2\pi} \int_{0}^{2\pi} (\tau(\theta) - \tau_{\text{des}})^2 \, d\theta \\
\text{subject to} & \quad \frac{1}{2\pi} \int_{0}^{T} \tau(\theta) \, d\theta = \tau_{\text{des}} \\
& \quad \tau = k(\theta)^T i + \tau_{\text{cog}}(\theta) \\
& \quad v(\theta) = Ri(\theta) + \omega Li'(\theta) + \omega k(\theta) \\
& \quad Ci(\theta) = 0 \\
& \quad v(\theta) = C^T e(\theta) + Bu(\theta)
\end{align*}
\]

- variables are \(i, v, u, e, \tau\) (all functions on \([0,2\pi]\))
Permanent magnet motor, waveform design

- a periodic linear-quadratic control problem
 - can discretize, solve by least squares
- in fact, many extensions retain convexity:
 - voltage limits \(|u(\theta)| \leq u_{\text{max}}\)
 - current limits \(|i(\theta)| \leq i_{\text{max}}\)
 - nonquadratic definitions of torque ripple
- extensions typically involve solving a quadratic program
- more discussion in paper\(^4\):
 - extensions/variations
 - custom fast solver → online waveform generation

Example

- $\gamma = 2 \text{ W/Nm}^2$
- Left: $\omega = 300 \text{ rad/s}$, right: $\omega = 400 \text{ rad/s}$
Induction motor

- rotor magnets replaced by more windings, which act as electromagnets (with current)
- rotor current produced by magnetic induction (using stator currents)
Induction motor

- Energy function is again quadratic:

\[E(\lambda, \theta) = \lambda^T A(\theta) \lambda \]

quadratic part dependent on \(\theta \) (affine part omitted for simplicity)

- Inductance equation is linear:

\[\lambda = L(\theta)i \]

- Torque is (indefinite) quadratic:

\[\tau = -i^T L'(\theta)i \]
Induction motor, maximum torque problem

- general waveform design problem intractable
- we focus on the maximum torque problem ($\gamma = 0$):
 - torque ripple penalty disappears
 - maximize average torque (a nonconvex quadratic function)
 - power loss constraint (a convex quadratic function)
Induction motor, maximum torque problem

- waveform design problem:

\[
\begin{align*}
\text{maximize} & \quad \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} -i(t)^T L'(\omega t) i(t) \, dt \\
\text{subject to} & \quad \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} i(t)^T R i(t) \, dt \leq p_{\text{loss}} \\
& \quad v(t) = R i(t) + \dot{\lambda}(t) \\
& \quad C i(t) = 0 \\
& \quad v(t) = C^T e(t) + B u(t) \\
& \quad \lambda(t) = L(\omega t) i(t)
\end{align*}
\]

- variables are \(i, v, u, e, \lambda \) (all functions on \(\mathbb{R}_+ \))

- equivalent to minimizing \(p_{\text{loss}} \) with average torque constraint
Induction motor, maximum torque problem

- can be converted to a nonconvex linear-quadratic control problem with a quadratic constraint
 - strong duality holds
 - original proof due to Yakubovich5
- further details in our paper6
 - equivalent semidefinite program (SDP)
 - method for constructing optimal waveforms from SDP solution
 - proof of tightness

6Moehle, Boyd. \textit{Maximum Torque-per-Current Control of Induction Motors via Semidefinite Programming}. 2016.
Example

traditional, sinusoidally wound, 5-phase motor with wye winding:

desired torque $\tau_{\text{des}} = 5 \text{ Nm}$, speed $\omega = 50 \text{ rad/s}$
Example

power loss is 11 W per Nm torque produced
Stator fault

Same motor, with open-phase fault:
Stator fault

Power loss is 14 W per Nm torque produced
Outline

1. waveform design for electric motors
 - permanent magnet
 - induction

2. control of switched-mode converters
Controlling switched-mode converters

input are switch configurations

traditionally:7

1. make discrete input continuous, by considering averaged switch on-time (‘duty cycle’)
2. choose a duty cycle corresponding to desired equilibrium
3. linearize the resulting system around equilibrium, use linear control

now:

state $x_t \in \mathbb{R}^n$ contains inductor currents, capacitor voltages
 – can be augmented to contain, e.g., reference signal
for each switch configuration, we have a linear circuit
switched-affine dynamics:

$$x_{t+1} = A^{u_t} x_t + b^{u_t}, \quad t = 0, 1, \ldots,$$

dynamics specified by A^i, b^i in mode i
control input is the mode $u_t \in \{1, \ldots, K\}$
may include mode restrictions (e.g., for a diode)
Switched-affine control

- switched-affine control problem is

\[
\begin{align*}
\text{minimize} & \quad \sum_{t=1}^{T} g(x_t) \\
\text{subject to} & \quad x_{t+1} = A^{u_t} x_t + b^{u_t} \\
& \quad x_0 = x_{\text{init}} \\
& \quad u_t \in \{1, \ldots, K\}
\end{align*}
\]

- constraints hold for all \(t \)
- variables are \(u_t \) and \(x_t \in \mathbb{R}^n \)
- problem data are dynamics \(A^i, b^i \), function \(g \), and initial condition \(x_{\text{init}} \)
- can be solved by trying out \(K^T \) trajectories
‘Solution’ via dynamic programming

- Bellman recursion: find functions V_t such that

$$V_t(x) = \min_{u \in \{1, \ldots, K\}} g(x) + V_{t+1}(A^u x + b^u)$$

for all x, for $t = T - 1, \ldots, 0$

- final value function $V_T = g$

- optimal problem value is $V_0(x_{\text{init}})$ at initial state x_{init}

- in general, intractable to compute (or store) V_t
Model predictive control

- idea: solve switched-affine control problem, implement first control action u_0, measure new system state, and repeat
- called *model predictive control* (MPC) or *receding horizon control*
- given $V = V_1$, MPC policy satisfies

$$
\phi_{mpc}(x) \in \arg\min_{u \in \{1, \ldots, K\}} V(A^u x + b^u)
$$

(ties broken arbitrarily)
Approximate dynamic programming policy

- In practice, MPC policy only works for T small
- (system response time measured in μs)
- Instead, approximate V as a quadratic function \hat{V}
- Given \hat{V}, ADP policy satisfies

$$\phi_{adp}(x) \in \arg\min_{u \in \{1, \ldots, K\}} \hat{V}(A^u x + b^u)$$

- Evaluating ϕ_{adp} requires evaluating a few quadratic functions
How to obtain \hat{V}?

- quadratic lower bounds on V can be found via semidefinite programming\(^8\)
- compute $V(x^{(i)})$ for many states $x^{(i)}$, fit best quadratic function \hat{V}
 - we used this method
 - subproblems solved using methods described in paper\(^9\)
- use exact value function for approximate linear control problem (e.g., linear-quadratic control)
 - provides a link to traditional methods

state x_t are inductor currents and capacitor voltages, and desired output current phasors

- cost function is deviation of output currents from desired (sinusoidally-varying) values

- model parameters $V_{dc} = 700$ V, $L_1 = 6.5 \mu$H, $L_2 = 1.5 \mu$H, $C = 15 \mu$F, $V_{load} = 300$ V, and desired output current amplitude $I_{des} = 10$ A.

- sampling time 30 μs
Result

<table>
<thead>
<tr>
<th>Policy</th>
<th>State cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP policy</td>
<td>0.70</td>
</tr>
<tr>
<td>MPC policy, $T = 1$</td>
<td>∞</td>
</tr>
<tr>
<td>MPC policy, $T = 2$</td>
<td>∞</td>
</tr>
<tr>
<td>MPC policy, $T = 3$</td>
<td>∞</td>
</tr>
<tr>
<td>MPC policy, $T = 4$</td>
<td>∞</td>
</tr>
<tr>
<td>MPC policy, $T = 5$</td>
<td>0.45</td>
</tr>
</tbody>
</table>

- for $T < 5$ MPC policy is unstable
- running MPC with $T = 5$ takes several seconds on PC
- ADP takes few hundred flops (can be carried out in μs)
Result

In steady state:

![Graph showing input current, output current, and capacitor voltage over time.](image-url)
Conclusions

- unconventional motors (asymmetrical, nonsinusoidally-wound, non-rotary) can be controlled using optimization, by designing the waveform to the motor
- modern techniques can be used to generate optimal controllers for power electronic converters, which
 - have fast response
 - can easily incorporate constraints
 - are intuitive to understand and tune
 - make good use of modern microprocessor capabilities
Sources for thesis

- **motors**

- **converters**
Other work

- published:

- unpublished:
Acknowledgements

- My advisor, Stephen Boyd
- My reading committee
- Labmates: Madeleine, Thomas, Ernest, Reza, Jaehyun, Baris, Corinne, Xinyue, Enzo, Steven, Anqi, Qingyun, Youngsuk, Jongho, Jonathan, David
- Stanford friends: Maria, Lydia, Diana, Charbel, Henryk, Giana, Beata
- Other friends: Sean, Josh, Ben
- My sister, Erica
- My parents, Jack and Melissa
Control of Electric Motors and Drives via Convex Optimization