EE365: Deterministic Finite State Control

Deterministic optimal control

Shortest path problem

Dynamic programming

Outline

Deterministic optimal control

Shortest path problem

Dynamic programming

Examples

Deterministic optimal control

Deterministic dynamic system

$$x_{t+1} = f_t(x_t, u_t), \quad t = 0, 1, \ldots$$

- t is time period or epoch
- ▶ $x_t \in \mathcal{X}_t$ is state
- $u_t \in U_t$ is input, action, or control (variation: $u_t \in U_t(x_t)$, *i.e.*, U_t depends on x_t)
- ▶ $f_t : \mathcal{X}_t \times \mathcal{U}_t \to \mathcal{X}_{t+1}$ is state transition function
- ▶ initial state x₀ is given
- common special case: f_t, X_t, U_t do not depend on t called time-invariant (TI) system

Deterministic optimal control

 $\begin{array}{ll} \text{minimize} & J = \sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T) \\ \text{subject to} & x_{t+1} = f_t(x_t, u_t), \quad t = 0, \dots, T-1 \end{array}$

- ▶ variables are $x_1, \ldots, x_T, u_0, \ldots, u_{T-1}; x_0$ is given
- $g_t : \mathcal{X}_t \times \mathcal{U}_t \to \mathbf{R} \cup \{\infty\}$ is stage cost function
- ▶ $g_T : \mathcal{X}_T \to \mathbf{R} \cup \{\infty\}$ is terminal cost function
- infinite values of stage and terminal costs encode (state/action) constraints
- just an optimization problem (trivial information pattern)
- \blacktriangleright called TI when dynamic system is TI and g_t doesn't depend on t

Outline

Deterministic optimal control

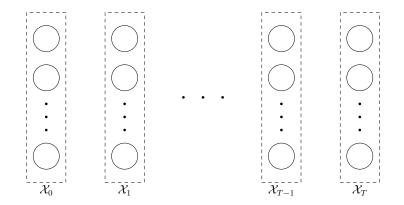
Shortest path problem

Dynamic programming

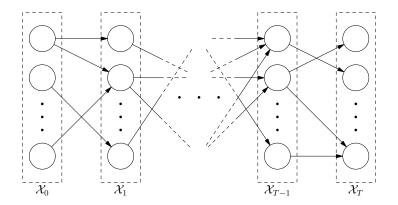
Examples

Finite state/action deterministic control

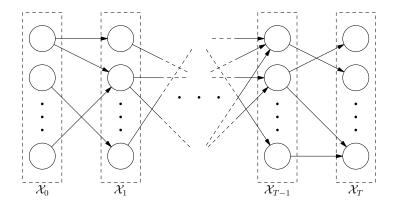
- now suppose \mathcal{X}_t , \mathcal{U}_t are finite
- create unrolled graph
 - vertices are $\mathcal{X}_0 \cup \cdots \cup \mathcal{X}_T$ (separate copies for each t)
 - directed edges labeled by u_t from x_t to $x_{t+1} = f_t(x_t, u_t)$ (can have multple edges from x_t to x_{t+1})
 - edge weights are $g_t(x_t, u_t)$; nodes in \mathcal{X}_T have weights $g_T(x_T)$
 - \blacktriangleright a sequence of actions is a path through the unrolled graph, starting at x_0 and ending in \mathcal{X}_t
 - associated objective J is (total, weighted) path length



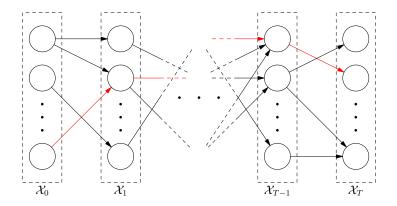
vertex set is $\mathcal{X}_0 \cup \cdots \cup \mathcal{X}_T$



directed edges, labeled by u_t , from x_t to $x_{t+1} = f_t(x_t, u_t)$



edge weights are $g_t(x_t, u_t)$; nodes in \mathcal{X}_T have weights $g_T(x_T)$



a sequence of actions is a path through the unrolled graph

Deterministic control via shortest path

- control/action sequence is a path through the unrolled graph
- ▶ J is total path weight
- deterministic optimal control problem is a shortest path problem
- many methods to solve; we'll focus on one, that we'll see later: dynamic programming (DP)

Outline

Deterministic optimal control

Shortest path problem

Dynamic programming

Examples

Value function

• define tail problem from $x_t = z$ as

$$\begin{array}{ll} \text{minimize} & J_t = \sum_{\tau=t}^{T-1} g_\tau(x_\tau, u_\tau) + g_T(x_T) \\ \text{subject to} & x_{\tau+1} = f_\tau(x_\tau, u_\tau), \quad \tau = t, \dots, T-1 \\ & x_t = z \end{array}$$

with optimal value $V_t(z)$

- V_t : X_t → R ∪ {∞} is called the optimal value function, cost-to-go function, or Bellman function
- \blacktriangleright $V_t(z)$ is the minimum cost-to-go if we are in state z at time t
- $\blacktriangleright V_T(z) = g_T(z)$
- $\blacktriangleright J^{\star} = V_0(x_0)$

Dynamic programming recursion

 \blacktriangleright optimal action in terms of current state x, value function:

$$u_t \in rgmin_{u \in \mathcal{U}_t}(g_t(x,u) + V_{t+1}(f_t(x,u)))$$

 \blacktriangleright in words: in state x at time t, optimal current action minimizes

• immediate cost $g_t(x, u)$, plus

• optimal cost from where you land, $V_{t+1}(f_t(x, u))$

value function recursion:

$$V_t(x) = \min_{u \in \mathcal{U}_t}(g_t(x,u) + V_{t+1}(f_t(x,u)))$$

• gives
$$V_t$$
 in terms of V_{t+1} (and g_t , f_t)

Dynamic programming

backward recursion for value function, optimal policy:

•
$$V_T(x) = g_T(x)$$
 for $x \in \mathcal{X}_T$

• for
$$t = T - 1, ..., 0$$
,

 $\blacktriangleright \ \mu_t(x) \in \mathop{\rm argmin}_{u \in \mathcal{U}_t}(g_t(x,u) + \ V_{t+1}(f_t(x,u))) \ \text{for} \ x \in \mathcal{X}_t$

$$\blacktriangleright \hspace{0.1in} V_t(x) = \hspace{0.1in} g_t(x, \mu_t(x)) + \hspace{0.1in} V_{t+1}(f_t(x, \mu_t(x))) \hspace{0.1in} \text{for} \hspace{0.1in} x \in \mathcal{X}_t$$

▶ cost is $\sum_{t=0}^{T} |\mathcal{X}_t| |\mathcal{U}_t|$ operations $(T|\mathcal{X}||\mathcal{U}|$ in TI case)

What DP gives you

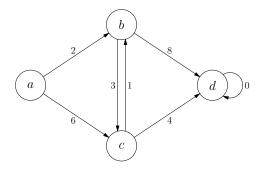
▶ DP gives optimal policy $\mu_t : \mathcal{X}_t \to \mathcal{U}_t, t = 0, ..., T - 1$

▶ optimal $u_0, \ldots, u_{T-1}, x_1, \ldots, x_T$ given by recursion

$$u_t = \mu_t(x_t), \quad x_{t+1} = f_t(x_t, u_t), \quad t = 0, \dots, T-1$$

• in fact, DP gives solution for **any** intial state x_0

find shortest path from a to d (without loss of generality, of length 3)



(unique) solution is evidently a
ightarrow b
ightarrow c
ightarrow d

as deterministic optimal control problem:

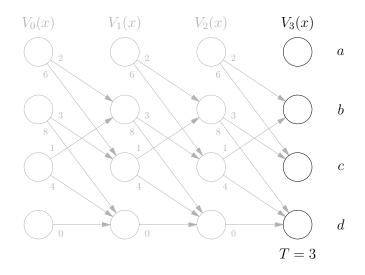
•
$$\mathcal{X} = \{ a, b, c, d \}, x_0 = a$$

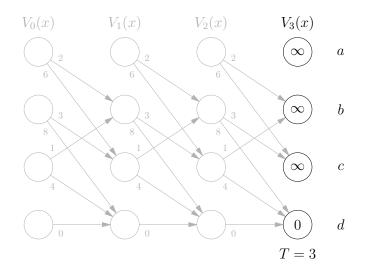
▶ $\mathcal{U}(x) = \operatorname{successors}(x)$

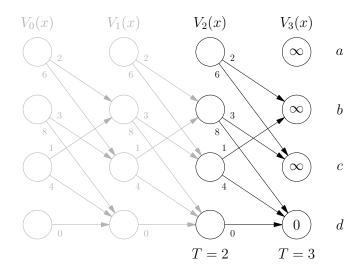
$$\blacktriangleright f(x, u) = u$$

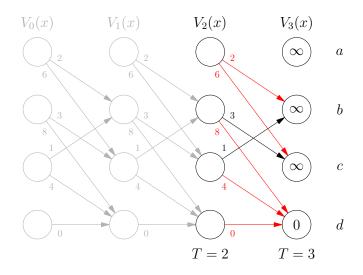
•
$$g(x, u)$$
 is given weight on edge (x, u)

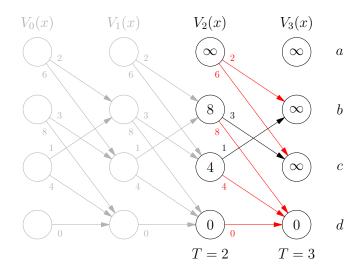
•
$$g_T(x) = \begin{cases} \infty & x = a, b, c \\ 0 & x = d \end{cases}$$
 (enforces terminal constraint $x_3 = d$)

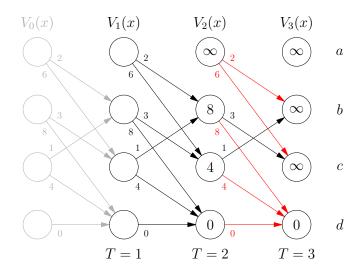


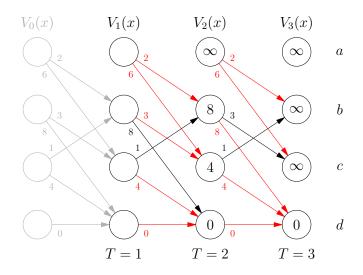


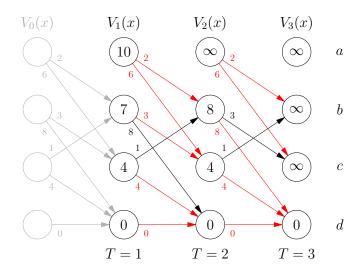




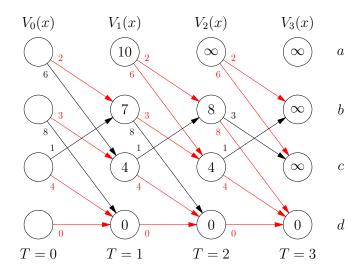


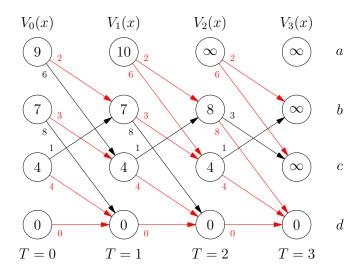


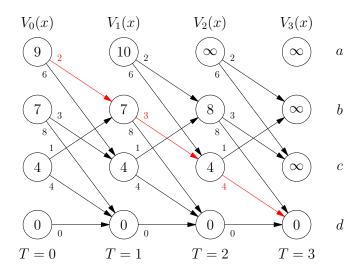












Why tail problems and a backward recursion?

answer: for deterministic control problem, there's no reason

- we could just as well have worked with initial problems (from au = 0 to au = t) instead of tail problems
- would yield forward recursion for W_t (min cost-from-start)
- for solving the stochastic control problem, however, DP will need to run backward

Outline

Deterministic optimal control

Shortest path problem

Dynamic programming

Hidden Markov state estimation

• $z_t \in \{1, \ldots, n\}, t = 0, \ldots, T$ is a Markov chain with

• transition probabilities $P_{ij} = \mathbf{Prob}(z_{t+1} = j \mid z_t = i)$

- initial distribution $\pi_j = \mathbf{Prob}(z_0 = j)$
- ▶ $y_t \in \{1, ..., m\}, t = 0, ..., T$ is a set of measurements related to z_t by conditional probabilities $Q_{ik} = \operatorname{Prob}(y_t = k \mid z_t = i)$
- we don't know the state sequence z_0, \ldots, z_T , but we do know the measurements y_0, \ldots, y_T (and the probabilities P_{ij}, π_j, Q_{ik})
- ▶ so we will estimate z_0, \ldots, z_T based on the measurements y_0, \ldots, y_T

Maximum a posteriori state estimation

- maximum a posteriori (MAP) estimate of z₀,..., z_T, denoted ẑ₀,..., ẑ_T, maximizes **Prob**(z₀,..., z_T | y₀,..., y_T)
- same as maximizing (over z_0, \ldots, z_T)

$$egin{aligned} \mathbf{Prob}(z_0,\ldots,z_T) \, \mathbf{Prob}(y_0,\ldots,y_T \mid z_0,\ldots,z_T) \ &= \left(\mathbf{Prob}(z_0) \prod_{t=0}^{T-1} \mathbf{Prob}(z_{t+1} \mid z_t)
ight) \left(\prod_{t=0}^{T} \mathbf{Prob}(y_t \mid z_t)
ight) \ &= \pi_{z_0} \left(\prod_{t=0}^{T-1} P_{z_t,z_{t+1}} \, Q_{z_t,y_t}
ight) \, Q_{z_T,y_T} \end{aligned}$$

equivalently, minimize the negative logarithm

$$-\log \pi_{z_0} - \sum_{t=0}^{T-1} \log(P_{z_t, z_{t+1}} Q_{z_t, y_t}) - \log Q_{z_T, y_T}$$

 \blacktriangleright a bad method: evaluate this expression for all n^{T+1} sequences

MAP Markov state estimation as deterministic control problem

- \blacktriangleright state space $\mathcal{X} = \{1, \dots, n\}$, action space $\mathcal{U} = \mathcal{X}$
- state-transition function $f(x_t, u_t) = u_t$
- ▶ time horizon T
- ▶ stage cost $g_t(x_t, u_t) = -\log(P_{x_t, u_t} Q_{x_t, y_t})$
- ▶ terminal cost $g_T(x_T) = -\log Q_{x_T,y_T}$

• initial cost
$$g_T(x_0) = -\log \pi_{x_0}$$

an efficient method for MAP estimation of Markov state sequence:

- ▶ use DP to find V₀, optimal policy
- find optimal x_0 by minimizing $-\log \pi_{x_0} + V_0(x_0)$

$E \times amples$

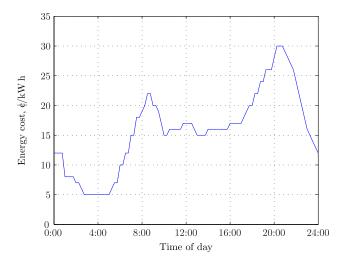
appliance (say, dishwasher) has five cycles (each 15 min)

cycle		power
1	prewash	1.5 kW
2	main wash	2.0 kW
3	rinse 1	0.5 kW
4	rinse 2	0.5 kW
5	dry	1 kW

- cycles must be run in order, possibly with idle periods
- electricity price varies (in 15 min periods)
- ▶ find cheapest cycle schedule starting at 17:00 and ending at 24:00

$E \times amples$

Electricity price



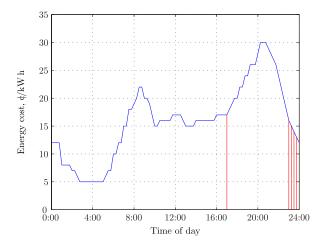
as deterministic optimal control problem

- ▶ t gives 15 min periods; t = 0 is 17:00-17:15, T = 28 is 24:00-24:15
- $\mathcal{X} = \{0, \dots, 5\}; x_t$ is number of cycles completed; $x_0 = 0$
- $\mathcal{U}(x) = \{0, 1\}$ (wait, run) for $x = 0, \dots, 4$; $\mathcal{U}(5) = \{0\}$ (done)
- ▶ state-transition function: $x_{t+1} = f(x_t, u_t) = x_t + u_t$

▶ stage cost:
$$g(x_t, u_t) = (1/4)c_t p_{x_t+1} u_t$$

- ct is electricity cost in period t
- p_i is power of cycle i
- ▶ terminal cost: $g_T(x_T) = 0$ for $x_T = 5$; ∞ otherwise

$E \times amples$

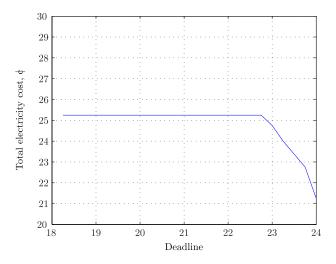


the cheapest cycle schedule is shown in red Examples

now suppose we change the time horizon...

the optimal cost is

- infinite for T < 5
- \blacktriangleright monotonically decreasing as a function of T



optimal policy: run appliance during the marked time periods

