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Deterministic dynamic system

xt+1 = ft (xt ;ut ); t = 0; 1; : : :

I t is time period or epoch

I xt 2 Xt is state

I ut 2 Ut is input, action, or control

(variation: ut 2 Ut (xt ), i.e., Ut depends on xt )

I ft : Xt � Ut ! Xt+1 is state transition function

I initial state x0 is given

I common special case: ft , Xt , Ut do not depend on t

called time-invariant (TI) system
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Deterministic optimal control

minimize J =
PT�1

t=0
gt (xt ;ut ) + gT (xT )

subject to xt+1 = ft (xt ;ut ); t = 0; : : : ;T � 1

I variables are x1; : : : ; xT , u0; : : : ;uT�1; x0 is given

I gt : Xt � Ut ! R [ f1g is stage cost function

I gT : XT ! R [ f1g is terminal cost function

I in�nite values of stage and terminal costs encode (state/action)

constraints

I just an optimization problem (trivial information pattern)

I called TI when dynamic system is TI and gt doesn't depend on t
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Finite state/action deterministic control

I now suppose Xt , Ut are �nite

I create unrolled graph

I vertices are X0 [ � � � [ XT (separate copies for each t)

I directed edges labeled by ut from xt to xt+1 = ft (xt ; ut )
(can have multple edges from xt to xt+1)

I edge weights are gt (xt ; ut ); nodes in XT have weights gT (xT )

I a sequence of actions is a path through the unrolled graph, starting at x0
and ending in Xt

I associated objective J is (total, weighted) path length
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Unrolled graph

X0 X1 XT−1 XT

vertex set is X0 [ � � � [ XT
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Unrolled graph

X0 X1 XT−1 XT

directed edges, labeled by ut , from xt to xt+1 = ft (xt ;ut )
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Unrolled graph

X0 X1 XT−1 XT

edge weights are gt (xt ;ut ); nodes in XT have weights gT (xT )
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Unrolled graph

X0 X1 XT−1 XT

a sequence of actions is a path through the unrolled graph
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Deterministic control via shortest path

I control/action sequence is a path through the unrolled graph

I J is total path weight

I deterministic optimal control problem is a shortest path problem

I many methods to solve; we'll focus on one, that we'll see later:

dynamic programming (DP)
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Value function

I de�ne tail problem from xt = z as

minimize Jt =
PT�1

�=t
g� (x� ;u� ) + gT (xT )

subject to x�+1 = f� (x� ;u� ); � = t ; : : : ;T � 1

xt = z

with optimal value Vt (z )

I Vt : Xt ! R [ f1g is called the optimal value function, cost-to-go

function, or Bellman function

I Vt (z ) is the minimum cost-to-go if we are in state z at time t

I VT (z ) = gT (z )

I J ? = V0(x0)
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Dynamic programming recursion

I optimal action in terms of current state x , value function:

ut 2 argmin
u2Ut

(gt (x ;u) +Vt+1(ft (x ;u)))

I in words: in state x at time t , optimal current action minimizes

I immediate cost gt (x ; u), plus

I optimal cost from where you land, Vt+1(ft (x ; u))

I value function recursion:

Vt (x ) = min
u2Ut

(gt (x ;u) +Vt+1(ft (x ;u)))

I gives Vt in terms of Vt+1 (and gt , ft )
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Dynamic programming

backward recursion for value function, optimal policy:

I VT (x ) = gT (x ) for x 2 XT

I for t = T � 1; : : : ; 0,

I �t (x ) 2 argminu2Ut
(gt (x ; u) +Vt+1(ft (x ; u))) for x 2 Xt

I Vt (x ) = gt (x ; �t (x )) +Vt+1(ft (x ; �t (x ))) for x 2 Xt

I cost is
PT

t=0
jXt jjUt j operations (T jX jjUj in TI case)
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What DP gives you

I DP gives optimal policy �t : Xt ! Ut , t = 0; : : : ;T � 1

I optimal u0; : : : ;uT�1, x1; : : : ; xT given by recursion

ut = �t (xt ); xt+1 = ft (xt ;ut ); t = 0; : : : ;T � 1

I in fact, DP gives solution for any intial state x0
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Example

�nd shortest path from a to d (without loss of generality, of length 3)

a

b

c

d
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8
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4

0

(unique) solution is evidently a ! b ! c ! d
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Example

as deterministic optimal control problem:

I X = fa ; b; c; dg, x0 = a

I U(x ) = successors(x )

I f (x ;u) = u

I T = 3

I g(x ;u) is given weight on edge (x ;u)

I gT (x ) =

�
1 x = a ; b; c

0 x = d
(enforces terminal constraint x3 = d)
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Why tail problems and a backward recursion?

answer: for deterministic control problem, there's no reason . . .

I we could just as well have worked with initial problems (from � = 0 to

� = t) instead of tail problems

I would yield forward recursion for Wt (min cost-from-start)

I for solving the stochastic control problem, however, DP will need to run

backward
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Hidden Markov state estimation

I zt 2 f1; : : : ;ng, t = 0; : : : ;T is a Markov chain with

I transition probabilities Pij = Prob(zt+1 = j j zt = i)

I initial distribution �j = Prob(z0 = j )

I yt 2 f1; : : : ;mg, t = 0; : : : ;T is a set of measurements related to zt by

conditional probabilities Qik = Prob(yt = k j zt = i)

I we don't know the state sequence z0; : : : ; zT , but we do know the

measurements y0; : : : ; yT (and the probabilities Pij , �j , Qik )

I so we will estimate z0; : : : ; zT based on the measurements y0; : : : ; yT
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Maximum a posteriori state estimation

I maximum a posteriori (MAP) estimate of z0; : : : ; zT , denoted ẑ0; : : : ; ẑT ,

maximizes Prob(z0; : : : ; zT j y0; : : : ; yT )

I same as maximizing (over z0; : : : ; zT )

Prob(z0; : : : ; zT )Prob(y0; : : : ; yT j z0; : : : ; zT )

=

 
Prob(z0)

T�1Y
t=0

Prob(zt+1 j zt )

! 
TY

t=0

Prob(yt j zt )

!

= �z0

 
T�1Y
t=0

Pzt ;zt+1Qzt ;yt

!
QzT ;yT

I equivalently, minimize the negative logarithm

� log �z0 �

T�1X
t=0

log(Pzt ;zt+1Qzt ;yt )� logQzT ;yT

I a bad method: evaluate this expression for all nT+1 sequences
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MAP Markov state estimation as deterministic control problem

I state space X = f1; : : : ;ng, action space U = X

I state-transition function f (xt ;ut ) = ut

I time horizon T

I stage cost gt (xt ;ut ) = � log(Pxt ;utQxt ;yt )

I terminal cost gT (xT ) = � logQxT ;yT

I initial cost gT (x0) = � log �x0

an e�cient method for MAP estimation of Markov state sequence:

I use DP to �nd V0, optimal policy

I �nd optimal x0 by minimizing � log �x0 +V0(x0)

Examples 21



Appliance scheduling

I appliance (say, dishwasher) has �ve cycles (each 15 min)

cycle power

1 prewash 1.5 kW

2 main wash 2.0 kW

3 rinse 1 0.5 kW

4 rinse 2 0.5 kW

5 dry 1 kW

I cycles must be run in order, possibly with idle periods

I electricity price varies (in 15 min periods)

I �nd cheapest cycle schedule starting at 17:00 and ending at 24:00
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Electricity price
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Appliance scheduling

as deterministic optimal control problem

I t gives 15 min periods; t = 0 is 17:00�17:15, T = 28 is 24:00�24:15

I X = f0; : : : ; 5g; xt is number of cycles completed; x0 = 0

I U(x ) = f0; 1g (wait, run) for x = 0; : : : ; 4; U(5) = f0g (done)

I state-transition function: xt+1 = f (xt ;ut ) = xt + ut

I stage cost: g(xt ;ut ) = (1=4)ctpxt+1ut

I ct is electricity cost in period t

I pi is power of cycle i

I terminal cost: gT (xT ) = 0 for xT = 5; 1 otherwise
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Appliance scheduling

the cheapest cycle schedule is shown in red
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Appliance scheduling

now suppose we change the time horizon...

the optimal cost is

I in�nite for T < 5

I monotonically decreasing as a function of T
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Appliance scheduling
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Appliance scheduling

optimal policy: run appliance during the marked time periods

Time, t
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