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Deterministic dynamic system

o1 = fe(ze, we), t=0,1,...

» t is time period or epoch
> 1 € X} is state

> u; € Uy is input, action, or control
(variation: u; € Us(z¢), i.e., Uy depends on z;)

v

fe : X X Uy — Xpy1 is state transition function

v

initial state z is given

» common special case: f;, X, U do not depend on ¢
called time-invariant (TI) system
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Deterministic optimal control

minimize J = EtT;Ol gt(ze, ut) + gr(zr)
subject to o4 :ft((Dt,’LLt), t= 0,..., T-1

» variables are z1,...,zr, uo,...,ur—1; To IS given
> gt X x Uy » RU{oo} is stage cost function
> gr: X7 — RU {0} is terminal cost function

» infinite values of stage and terminal costs encode (state/action)
constraints

> just an optimization problem (trivial information pattern)

» called TI when dynamic system is Tl and g; doesn’t depend on ¢

Deterministic optimal control



Outline

Shortest path problem

Shortest path problem



Finite state/action deterministic control

> now suppose Xz, U; are finite
» create unrolled graph
> vertices are Xo U --- U X7 (separate copies for each t)

> directed edges labeled by u; from at to @41 = fi(@t, ut)
(can have multple edges from z; to z¢41)

> edge weights are g¢(z¢, ut); nodes in Xt have weights gr(zr)

> a sequence of actions is a path through the unrolled graph, starting at zp
and ending in X

> associated objective J is (total, weighted) path length

Shortest path problem



Unrolled graph

U X

vertex set is Xp U - -

Shortest path problem



Unrolled graph

directed edges, labeled by u:, from z; to o1 = fi(ze, ut)

Shortest path problem



Unrolled graph

edge weights are g:(z¢, ut); nodes in X7 have weights gr(zr)

Shortest path problem



Unrolled graph

a sequence of actions is a path through the unrolled graph

Shortest path problem



Deterministic control via shortest path

v

control/action sequence is a path through the unrolled graph

v

J is total path weight
» deterministic optimal control problem is a shortest path problem

» many methods to solve; we'll focus on one, that we'll see later:
dynamic programming (DP)

Shortest path problem
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Value function

» define tail problem from z: = z as

minimize  J; = Zf:_tl gr(zr, ur) + gr(zr)
subject to  zr4+1 = fr(zr,ur), T=1¢,...,T—1
Tt = 2

with optimal value Vi(z)

> Vi: X - RU{oo} is called the optimal value function, cost-to-go
function, or Bellman function

» Vi(z) is the minimum cost-to-go if we are in state z at time ¢
> Vi(z) = 91(2)
> J* = Vo(mo)

Dynamic programming
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Dynamic programming recursion

» optimal action in terms of current state z, value function:

w € argmin(g:(z, u) + Vit1(fi(z, u)))
uEU}

> in words: in state z at time ¢, optimal current action minimizes
» immediate cost g¢(z, u), plus
» optimal cost from where you land, Viy1(fi(z, u))

» value function recursion:

Vi(2) = min(ge(z, u) + Vira(fi(z, v))

> gives Vi in terms of Viy1 (and g¢, ft)
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Dynamic programming

backward recursion for value function, optimal policy:

> Vr(z) = gr(z) for z € Xr

» fort=T-1,...,0,
> pe(a) € argmin, ey, (0¢(, u) + Vira(fila, u))) for = € X
> Vi(z) = gi(z, pe(z)) + Vigr(fi(z, ue(z))) for z € X

> cost is ZtT:O | Xt||Us| operations (T'|X||U| in TI case)
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What DP gives you

» DP gives optimal policy ¢ : Xy — U, t =0,..., T —1
» optimal wo,...,ur_1, 21,...,Zr given by recursion
ur = pe(ze), Ty = felze, we), t=0,...,T-1

> in fact, DP gives solution for any intial state o

Dynamic programming 13



Example

find shortest path from a to d (without loss of generality, of length 3)

(unique) solution is evidently a - b — ¢ — d

Dynamic programming
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Example

as deterministic optimal control problem:
» X ={a,b,c,d} mp=ua
» U(z) = successors(z)
> f(z,u)=u
» T'=3

> g(z,u) is given weight on edge (z, u)

oo zT=a,b,c . .
> gr(z) = { 0 z— d’ "7 (enforces terminal constraint zz3 = d)

Dynamic programming
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Why tail problems and a backward recursion?

answer: for deterministic control problem, there's no reason ...

» we could just as well have worked with initial problems (from 7 =0 to
T = t) instead of tail problems

» would yield forward recursion for W; (min cost-from-start)

» for solving the stochastic control problem, however, DP will need to run
backward

Dynamic programming
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Hidden Markov state estimation

» zz€{1,...,n},t=0,..., T is a Markov chain with
> transition probabilities P;; = Prob(zt41 =7 | 2t = 1)
» initial distribution m; = Prob(zo = j)

» y €{1,...,m}, t=0,..., T is a set of measurements related to z: by
conditional probabilities Qi = Prob(y: = k| 2z = 1)

» we don’t know the state sequence zo, ..., zr, but we do know the
measurements o, ..., Y7 (and the probabilities P;;, m;, Qi)

» so we will estimate 2, ..., zr based on the measurements vo, ..., yr

Examples
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Maximum a posteriori state estimation

» maximum a posteriori (MAP) estimate of z, ..., zr, denoted 2o,..., 27,
maximizes Prob(zo,..., 27 | ¥o,...,yr)
> same as maximizing (over z,..., 2r)

Prob(z, ..., zr) Prob(yo,...,yr | 20, ..., 27)

T—1 T
= | Prob(z) [ | Prob(ze41 | ) | | [ [ Prob(y: | 2)
t=0 t=0
T—1
=Tz H Pzt,2t+1 Qz,yi | Qzriyr
t=0

» equivalently, minimize the negative logarithm
T—1
—log mz — Z log(PZt,Zt+1 ta,yt) — log Qz7,yr
t=0

> a bad method: evaluate this expression for all nT*! sequences

Examples
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MAP Markov state estimation as deterministic control problem

> state space X = {1,...,n}, action space i = X
» state-transition function f(z¢, ut) = u:

» time horizon T

> stage cost g¢(zt, ut) = — 10g(Poy,us Qa1 ,y:)

> terminal cost gr(zr) = —log Qup,yyr

v

initial cost gr(zo) = — log 74,

an efficient method for MAP estimation of Markov state sequence:
» use DP to find Vo, optimal policy

» find optimal zg by minimizing — log 7z, + V(o)

Examples
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Appliance scheduling

> appliance (say, dishwasher) has five cycles (each 15 min)

cycle power
1 prewash 1.5 kW
2 main wash 2.0 kW
3 rinse 1 0.5 kW
4 rinse 2 0.5 kW
5 dry 1 kw

» cycles must be run in order, possibly with idle periods
» electricity price varies (in 15 min periods)

» find cheapest cycle schedule starting at 17:00 and ending at 24:00

Examples
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Electricity price
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Energy cost, ¢/kW h
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Appliance scheduling

as deterministic optimal control problem
» t gives 15 min periods; t = 0 is 17:00-17:15, T = 28 is 24:00-24:15
» X =40,...,5}; z¢ is number of cycles completed; zg =0
» U(z) = {0,1} (wait, run) for z = 0,...,4; U(5) = {0} (done)
> state-transition function: @41 = f(@e, ut) = @ + ue
> stage cost: g(zt, us) = (1/4)CtPayy1ue
> ¢ is electricity cost in period ¢
> p; is power of cycle ¢

» terminal cost: gr(zr) = 0 for zr = 5; 0o otherwise
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Appliance scheduling

Energy cost, ¢/kW h

0:00 4:00

the cheapest cycle schedule is
Examples
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Appliance scheduling

now suppose we change the time horizon...

the optimal cost is
» infinite for T < 5

» monotonically decreasing as a function of T

Examples
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Appliance scheduling

Examples
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Appliance scheduling

optimal policy: run appliance during the marked time periods
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