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Markov decision problem

> dynamics: zz41 = fe(@e, ue, we)
> Zo, Wo, ..., wr—1 independent, with known distributions
» state feedback policy: us = pt(z:)

» we consider deterministic cost for simplicity:

T-—1

J=E Z g¢(ze, ut) + gr(zr)

t=0

» find policy u = (po, ..., ur—1) that minimizes J

> data:
» dynamics functions fo, ..., fr—1
> stage cost functions go,..., gr—1 and terminal cost gr
» distributions of xp, wo,...,wr_1
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Optimal value function

> define
T-1
Vi(e)= min B[ g(e,u)+gr(er) =2
Kt sht41s- 0T —1
T=t
» minimization is over policies p¢, ..., ur—1; Tt+1 = fe(ze, ue, we)

» since z; = z is known, we can just as well minimize over action u; and
policies MKtt1y. .y UT—1-

» V{(z) is expected cost-to-go, using an optimal policy, if you are in state
z at time ¢

> J* =) mo(z) Vo(z) =mo Vg

» V; also called Bellman value function, optimal cost-to-go function
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Optimal policy

» the policy

pi(z) € argmin (gi(z, v) + E Vi (fi(z, u, we)))

is optimal (we'll show this later)
> expectation is over w;
» can choose any minimizer when minimizer is not unique
» there can be optimal policies not of the form above

» looks circular and useless: need to know optimal policy to find V*
(we'll see later this is not correct)
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Interpretation

ui(2) € argmin (g:(2, v) + B Vi1 (fi(e, u, we))

assuming you are in state z at time ¢, and take action u
» g:(z,u) (a number) is the current stage cost you pay

> Vi (fi(z, u, we)) (a random variable) is the cost-to-go from where you
land, if you follow an optimal policy for t +1,..., T —1

» E V5 (fi(z, w, wt)) (a number) is the expected cost-to-go from where

you land

optimal action is to minimize sum of current stage cost and expected
cost-to-go from where you land
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Greedy policy

> greedy policy is u$"(z) € argmin, g:(z, )

> at any state, minimizes current stage cost without regard for effect of
current action on future states

» in optimal policy

Ki(z) € argmin (g:(z, u) + E Vi (fi(z, v, wr)))

second term summarizes effect of current action on future states
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Dynamic programming

» define Vi(z) := gr(z)
» fort=T-1,...,0,
» find optimal policy for time t in terms of th_l:
wi(z) € argmin (gi(2, w) + B Vi (A=, u,we)))

> find V¥ using u}:
Vi (2) := gi(z, pi(2)) + E Vi (Fi(e, pi(2), we))

» a recursion that runs backward in time

» complexity is T'|X||U||W| operations (fewer when P is sparse)
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Variations

» random costs:
#’?(m) € a'rgminu E (gt(a:: u, wt) + Vtil(ft(zy u, wt)))
Vi (z) := E gi(z, pi(z), w) + B Vi (filz, i (z), we))
> state-action separable cost g:(z, u) = g:(z) + r(u):
pt(z) € argmin, (r:(v) + E V4,1 (filz, v, wt)))
Vi(z) == qi(z) + re(pi(2) + E Vi (filz, wi(z), wr))
» deterministic system:
wi(z) € argmin, (g:(z, v) + Vi, (fi(z, w)))
Vi(z) = gi(z, pi(2)) + Vi (filz, ui(2)))
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Bellman operator

v

v

deterministic cost case for simplicity

define Bellman or dynamic programming operator T; as
Ti(h)(z) = min (gi(z, v) + Eh(fi(z, u, w)))
for any h : X — R (expectation is over w;)
then we have V7 = gr, and
Vi =TuV,), t=T-1,...,0
for policy p} we have
Vi'(z) = g¢(z, pi(z)) + E Vi1 (fi(z, pi(z), w)), t=T-1,...,0

this is value iteration for evaluating J*, so J* = mo V§

Proof of optimality
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Monotonicity of Bellman operator

» Bellman operator is monotone:
h<h = Ti(h) < Ti(h)
(inequalities mean for all )
> to see this, assume h < h; note that for any z and wu,
gi(e,u) + ER(fi(z, u, w)) < gele, v) + ER(fi(z, u, w))
(by monotonicity of expectation)
» minimizing each side over u (and using monotonicity of minimization)

Ti(h)(z) < Te(h)(2)
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Proof of optimality

> let u be any policy, with cost J#, and value functions V}*

» we will show that J¥ > J*, which shows p* is optimal

» forany h: X — R, we have
g:(z, pe(2)) + Eh(fi(z, pe(2), we)) 2 Te(h)(2)
since RHS minimizes LHS over all choices of u = u:(z)

» value functions with policy p satisfy V& = gr and

9t(z, ue(z)) + E VE, (filz, pe(z), we))
> T thfi-l)(z)

V{(z)

Proof of optimality
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Proof of optimality

> using Vi = Ti( Vi), VI > Ti(VE,L), and Vi = Vi = gr,
v %(Vtil)
TeTer(VE)

v v

TeTegr - Tr=1(VE)
= 7_t7_t+1"'TT—1(gT)
= vV

» andso J¥ =mo V' > mo Vi = J*

Proof of optimality



Summary

» any policy defined by dynamic programming is optimal
> (can replace ‘any’ with 'the’ when the argmins are unique)
» V* is minimal for any ¢, over all policies (i.e., Vi* < V)

> there can be other optimal (but pathological) policies; for example we
can set uo(z) to be anything you like, provided mo(z) = 0

Proof of optimality
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Example: Inventory model

(our old friend) the inventory model

» z: € {0,1,...,6}; 20 =6

> Ty = — dp + U

» Prob(d; = 0,1,2) = (0.7,0.2,0.1)

> gi(z,u) =sz+ olyse, s=0.1,0=1

» add constraints 2 — z; < uz <6 — z; (so zz41 € {0,1,...,6} for any d;)
» recall heuristic policy: refill if z; <1

(z) = 6—z x2z=0o0r1l
HE)=13 o otherwise
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Example: Inventory model
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Example: Inventory model

» optimal policy vs. heuristic policy

4 4 4
3 3 3
0 0 0
#*: 0 0 0 , heur:
0 0 0
0 0 0
L0 0 0 | i

> expected total costs: J* = 20.83, J2eUr = 23.13

» heuristic policy over-orders!

Examples
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Example: Queue serving

g1

[*}]

> two queues, each with maximum queue length @
> queue lengths at time t is g; € {0,..., @}*

> customer arrivals at time t is d; € {0,1}?; do, ..., dr are IID
(zero or one arrival in each queue in each time period)

> server can process one customer from either queue in each time period

Examples
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Example: Queue serving

» action: serve a customer from first or second queue, or neither

w € {(0,0),(0,1),(1,0)}
» dynamics is ge+1 = min((g: + dt — wt), @)
> min is component-wise
> we'll add constraint that (ut); = 0 when (g¢); =0, so gi+1 > 0
> rejected customers: 7 = (gt + de — ur — Q)+
> (rt)i =1 when (gt)i = Q, (dt);i =1, and (ut); =0

> (7¢); = 0 otherwise

Examples
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Example: Queue serving

» cost function is

gt(ge,ue, de) = a" g + " g+ T v+ Li<q (g, ue)
» first two terms are queue length costs; third is rejection cost
» constraint u; < g; is enforced by stage cost term

0 Ut S qt
oo otherwise

Iutﬁth(qt) ut) = {

> a,b,c €RZ are cost coefficients

Examples
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Example: Queue serving

problem instance:
1,10), ¢ = (10, 10)

» Q=5 T =100, a =(5,1),
\ 2 3 4 5

queue length

cost (

(

1

Q) 6 22 48 84 130
cost (g2) 1

b=
0
0
0 1 24 39 56 75

» distribution of d; is

Prob(d: = (0,0)) = 0.2
Prob(d: = (0,1)) =0.15
Prob(d: = (1,0)) = 0.45
Prob(d: = (1,1)) = 0.2

(arrivals at queue 1 and queue 2 are not independent)

» E d; = (0.65,0.35)

Examples
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Example: Queue serving

t =100
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =099
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =08
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=97
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =096
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=095
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =80
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =60
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =40
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =30
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=20
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=10
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Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=0
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Example: Queue serving

» starting with both queues empty

> expected cost over time, under the optimal policy

|| —queue 1

35 ——queue 2

30 —rejection
25
20
15
10
5
0

20 40 60 80 100
t

> total expected cost is J* = 3387

Examples
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Example: Queue serving

consider gy priority policy,

Examples
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Example: Queue serving

> expected cost over time, under policy u?

|| —queue 1
35 ——queue 2 /

—rejection
30

25

20 40 60

> total expected cost is J! = 3632

Examples



Example: Queue serving

time traces: optimal policy p* (left),

q1 priority policy u* (right)

5
U —queue 1 v V
4 ——queue 2 4
3r 3
2r 2
1r 1
0 0
0 20 40 60 80 100 0 20 40 60 80 100

Examples
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Observations

» for time-invariant dynamics and stage costs, as ¢t goes down
> the policy appears to converge: pi—1 = pt
> V; seems to converge to a fixed shape, plus an offset:
Vicim Vita

(e is average stage cost)

» more on these phenomena later

Examples
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DP for modified information pattern

» suppose w; is known (as well as z;) before u; is chosen

> typical applications: action is chosen after current (random) price, cost,
demand, congestion is revealed

» policy has form us = pe(ze, we), pe = X X We = Uy

» can map this into our standard form, but it's more natural to modify DP
to handle it directly

Dynamic programming for modified information pattern
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Optimal value function when w; is known

» define
T—1
% .
Vie)= min B[ g(er,u,w)+gr(er)| e =2
Htshtt1 e hT—1
T=t
> minimization is over policies y¢,...,ur_1, functions of z and w

> subject to dynamics Tt41 = ft(CEt, Ut, ’I.Ut)

> V{(z) is expected cost-to-go, using an optimal policy, if you are in state
z at time t, before w; is revealed

Dynamic programming for modified information pattern 33



Dynamic programming for w; known

> define V3(z) := gr(z)
» fort=T-1,...,0,
> find optimal policy for time ¢ in terms of V7, ,:
wr(z,w) € argmin (gt(m, u, w) + Vi, (fi(z, v, w)))
u
> find VX using p}:

Vt*(x) = E (gt(w: /J'?(I: wt)! wt) + Vtﬁ-l(ft(znu?(xx wt)! wt)))

(expectation is over w)

» only need to store a value function on X%, even though policy is a
function on X x Wk

Dynamic programming for modified information pattern
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DP for modified information pattern Il

1 ,,@
t

» suppose wy = (w; ', w,"’) splits into independent components

1) . .
> wt( ) is known (as well as z¢) before u; is chosen

> wt(z) is not known before u; is chosen
» policy has form u; = pe(z, wt(l)), Mt X X Wt(l) — Ut

» can map this into our standard form, but it's more natural to modify DP
to handle it directly

Dynamic programming for modified information pattern Il 36



Optimal value function when wt(l) is known

» define
T—1
Vi@)= min B[ gz, u,w)+gr(er)|w =2
Htshtd 1y hT—1
T=t
> minimization is over policies u¢,...,u7r—1, functions of z and w(®)

> subject to dynamics Tt41 = ft(:Et, Ut, ’I.Ut)

» V{(z) is expected cost-to-go, using an optimal policy, if you are in state

z at time t, before wt(l) is revealed

Dynamic programming for modified information pattern Il
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Dynamic programming for wt(l) known
» define Vi(z) := gr(z)
» fort=T-1,...,0,
» find optimal policy for time t in terms of th_l:
bi(e,w®) € argmin® (a(e, w, (0, w)) + Ve (o (0, w))))
u
(expectation is over wt(2))
> find V using p}:
VF — B * (1) v * (1)
i(z): gt(e, pi(z,w; ") we) + Vi (e, wi (2, w,0), we))
(expectation is over wt)

» only need to store a value function on X%, even though policy is a
function on X; x Wt(l)

Dynamic programming for modified information pattern Il 38
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