EE365: Dynamic Programming

Optimal value function and dynamic programming

Proof of optimality

Examples

Dynamic programming for modified information pattern

Dynamic programming for modified information pattern II

Outline

Optimal value function and dynamic programming

Proof of optimality

Examples

Dynamic programming for modified information pattern

Dynamic programming for modified information pattern II

Markov decision problem

- lacksquare dynamics: $x_{t+1} = f_t(x_t, u_t, w_t)$
- \triangleright $x_0, w_0, \ldots, w_{T-1}$ independent, with known distributions
- state feedback policy: $u_t = \mu_t(x_t)$
- we consider deterministic cost for simplicity:

$$J = \mathbf{E}\left(\sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T)
ight)$$

- find policy $\mu=(\mu_0,\ldots,\mu_{T-1})$ that minimizes J
- data:
 - dynamics functions f_0, \ldots, f_{T-1}
 - ▶ stage cost functions g_0, \ldots, g_{T-1} and terminal cost g_T
 - ightharpoonup distributions of $x_0, w_0, \ldots, w_{T-1}$

Optimal value function

define

$$V_t^\star(x) = \min_{\mu_t,\mu_{t+1},\dots,\mu_{T-1}} \mathbf{E}\left(\sum_{ au=t}^{T-1} g_ au(x_ au,u_ au) + g_T(x_T) igg| x_t = x
ight)$$

- ightharpoonup minimization is over policies μ_t, \ldots, μ_{T-1} ; $x_{t+1} = f_t(x_t, u_t, w_t)$
- since $x_t=x$ is known, we can just as well minimize over action u_t and policies $\mu_{t+1},\ldots,\mu_{T-1}$.
- $lackbox{$V_t^{\star}(x)$ is expected cost-to-go, using an optimal policy, if you are in state x at time $t$$
- $J^{\star} = \sum_{x} \pi_{0}(x) V_{0}^{\star}(x) = \pi_{0} V_{0}^{\star}$
- $lackbox{V}_t^\star$ also called Bellman value function, optimal cost-to-go function

Optimal policy

► the policy

$$\mu_t^\star(x) \in \operatorname*{argmin}\limits_{u} \left(g_t(x,u) + \mathbf{E} \; V_{t+1}^\star(f_t(x,u,w_t))
ight)$$

is optimal (we'll show this later)

- ightharpoonup expectation is over w_t
- can choose any minimizer when minimizer is not unique
- there can be optimal policies not of the form above
- looks circular and useless: need to know optimal policy to find V_t^{\star} (we'll see later this is not correct)

Interpretation

$$\mu_t^\star(x) \in \operatorname*{argmin}\limits_{u} \left(g_t(x,u) + \mathbf{E} \; V_{t+1}^\star(f_t(x,u,w_t))
ight)$$

assuming you are in state x at time t, and take action u

- $ightharpoonup g_t(x,u)$ (a number) is the current stage cost you pay
- $V_{t+1}^*(f_t(x,u,w_t))$ (a random variable) is the cost-to-go from where you land, if you follow an optimal policy for $t+1,\ldots,T-1$
- $ightharpoonup {f E}\ V_{t+1}^{\star}(f_t(x,u,w_t))$ (a number) is the expected cost-to-go from where you land

optimal action is to minimize sum of current stage cost and expected cost-to-go from where you land

Greedy policy

- lacktriangledown greedy policy is $\mu_t^{ exttt{gr}}(x) \in exttt{argmin}_u g_t(x,u)$
- at any state, minimizes current stage cost without regard for effect of current action on future states
- ▶ in optimal policy

$$\mu_t^\star(x) \in \operatorname*{argmin}\limits_{u} \left(g_t(x,u) + \operatorname{\mathbf{E}} V_{t+1}^\star(f_t(x,u,w_t))
ight)$$

second term summarizes effect of current action on future states

Dynamic programming

- lacksquare define $V_T^\star(x):=g_T(x)$
- ▶ for t = T 1, ..., 0,
 - find optimal policy for time t in terms of V_{t+1}^{\star} :

$$\mu_t^\star(x) \in \operatorname*{argmin}\limits_{u} \left(g_t(x,\,u) + \mathbf{E} \; V_{t+1}^\star(f_t(x,\,u,\,w_t))
ight)$$

• find V_t^{\star} using μ_t^{\star} :

$$V_t^{\star}(x) := g_t(x, \mu_t^{\star}(x)) + \mathbf{E} \ V_{t+1}^{\star}(f_t(x, \mu_t^{\star}(x), w_t))$$

- a recursion that runs backward in time
- lacktriangle complexity is $T|\mathcal{X}||\mathcal{U}||\mathcal{W}|$ operations (fewer when P is sparse)

Variations

random costs:

$$egin{aligned} \mu_t^\star(x) \in \operatorname{argmin}_u \mathbf{E}\left(g_t(x,u,w_t) + V_{t+1}^\star(f_t(x,u,w_t))
ight) \ V_t^\star(x) := \mathbf{E}\,g_t(x,\mu_t^\star(x),w_t) + \mathbf{E}\,V_{t+1}^\star(f_t(x,\mu_t^\star(x),w_t)) \end{aligned}$$

lacksquare state-action separable cost $g_t(x,u)=q_t(x)+r_t(u)$:

$$egin{aligned} \mu_t^\star(x) \in \operatorname{argmin}_u\left(r_t(u) + \mathbf{E} \ V_{t+1}^\star(f_t(x,u,w_t))
ight) \ V_t^\star(x) := q_t(x) + r_t(\mu_t^\star(x)) + \mathbf{E} \ V_{t+1}^\star(f_t(x,\mu_t^\star(x),w_t)) \end{aligned}$$

deterministic system:

$$egin{aligned} \mu_t^\star(x) \in \operatorname{argmin}_u\left(g_t(x,u) + V_{t+1}^\star(f_t(x,u))
ight) \ V_t^\star(x) &:= g_t(x,\mu_t^\star(x)) + V_{t+1}^\star(f_t(x,\mu_t^\star(x))) \end{aligned}$$

Outline

Optimal value function and dynamic programming

Proof of optimality

Examples

Dynamic programming for modified information pattern

Dynamic programming for modified information pattern II

Bellman operator

- deterministic cost case for simplicity
- ightharpoonup define Bellman or dynamic programming operator \mathcal{T}_t as

$$\mathcal{T}_t(h)(x) = \min_u \left(g_t(x,u) + \mathbf{E} \ h(f_t(x,u,w_t))
ight)$$

for any $h: \mathcal{X} \to \mathbf{R}$ (expectation is over w_t)

lacktriangle then we have $V_T^\star=g_T$, and

$$V_t^{\star} = \mathcal{T}_t(V_{t+1}^{\star}), \quad t = T - 1, \dots, 0$$

• for policy μ_t^{\star} we have

$$V_t^\star(x) = g_t(x, \mu_t^\star(x)) + \mathbf{E} \; V_{t+1}^\star(f_t(x, \mu_t^\star(x), w_t)), \quad t = T-1, \ldots, 0$$

lacktriangle this is value iteration for evaluating J^\star , so $J^\star=\pi_0\,V_0^\star$

Monotonicity of Bellman operator

Bellman operator is monotone:

$$h \leq \tilde{h} \implies \mathcal{T}_t(h) \leq \mathcal{T}_t(\tilde{h})$$

(inequalities mean for all x)

lacktriangle to see this, assume $h \leq \tilde{h}$; note that for any x and u,

$$g_t(x,u) + \mathbf{E}\,h(f_t(x,u,w_t)) \leq g_t(x,u) + \mathbf{E}\, ilde{h}(f_t(x,u,w_t))$$

(by monotonicity of expectation)

ightharpoonup minimizing each side over u (and using monotonicity of minimization)

$$\mathcal{T}_t(h)(x) \leq \mathcal{T}_t(ilde{h})(x)$$

Proof of optimality

- lacktriangleright let μ be any policy, with cost J^μ , and value functions V^μ_t
- lacktriangle we will show that $J^{\mu} \geq J^{\star}$, which shows μ^{\star} is optimal
- ▶ for any $h: \mathcal{X} \to \mathbf{R}$, we have

$$g_t(x,\mu_t(x)) + \mathbf{E} \ h(f_t(x,\mu_t(x),w_t)) \geq \mathcal{T}_t(h)(x)$$

since RHS minimizes LHS over all choices of $u=\mu_t(x)$

lacktriangle value functions with policy μ satisfy ${V}_{T}^{\mu}={g}_{T}$ and

$$egin{array}{lll} V_t^{\mu}(x) & = & g_t(x,\mu_t(x)) + \mathbf{E} \ V_{t+1}^{\mu}(f_t(x,\mu_t(x),w_t)) \ & \geq & \mathcal{T}_t(V_{t+1}^{\mu})(x) \end{array}$$

Proof of optimality

▶ using
$$V_t^{\star} = \mathcal{T}_t(V_{t+1}^{\star})$$
, $V_t^{\mu} \ge \mathcal{T}_t(V_{t+1}^{\mu})$, and $V_T^{\star} = V_T^{\mu} = g_T$,
$$V_t^{\mu} \ge \mathcal{T}_t(V_{t+1}^{\mu})$$

$$\ge \mathcal{T}_t\mathcal{T}_{t+1}(V_{t+2}^{\mu})$$

$$\vdots$$

$$\ge \mathcal{T}_t\mathcal{T}_{t+1} \cdots \mathcal{T}_{T-1}(V_T^{\mu})$$

$$= \mathcal{T}_t\mathcal{T}_{t+1} \cdots \mathcal{T}_{T-1}(g_T)$$

$$= V_t^{\star}$$

• and so $J^{\mu} = \pi_0 \, V_0^{\mu} \geq \pi_0 \, V_0^{\star} = J^{\star}$

Proof of optimality

Summary

- ▶ any policy defined by dynamic programming is optimal
- ► (can replace 'any' with 'the' when the argmins are unique)
- $ightharpoonup V_t^{\star}$ is minimal for any t, over all policies (i.e., $V_t^{\star} \leq V_t^{\mu}$)
- there can be other optimal (but pathological) policies; for example we can set $\mu_0(x)$ to be anything you like, provided $\pi_0(x)=0$

Proof of optimality 15

Outline

Optimal value function and dynamic programming

Proof of optimality

Examples

Dynamic programming for modified information pattern

Dynamic programming for modified information pattern II

(our old friend) the inventory model

$$\mathbf{Prob}(d_t = 0, 1, 2) = (0.7, 0.2, 0.1)$$

$$g_t(x, u) = sx + o1_{u>0}, s = 0.1, o = 1$$

lacktriangledown add constraints $2-x_t \leq u_t \leq 6-x_t$ (so $x_{t+1} \in \{0,1,\ldots,6\}$ for any d_t)

ightharpoonup recall heuristic policy: refill if $x_t < 1$

$$\mu(x) = \left\{ egin{array}{ll} 6-x & x=0 ext{ or } 1 \ 0 & ext{ otherwise} \end{array}
ight.$$

optimal policy vs. heuristic policy

$$\mu^* = \left[egin{array}{ccccc} 4 & \cdots & 4 & 4 \ 3 & \cdots & 3 & 3 \ 0 & \cdots & 0 & 0 \ \end{array}
ight], \qquad \mu^{ ext{heur}} = \left[egin{array}{ccccc} 6 & \cdots & 6 & 6 \ 5 & \cdots & 5 & 5 \ 0 & \cdots & 0 & 0 \ \end{array}
ight]$$

- expected total costs: $J^* = 20.83$, $J^{\text{heur}} = 23.13$
- heuristic policy over-orders!

- ightharpoonup two queues, each with maximum queue length Q
- lacktriangle queue lengths at time t is $q_t \in \{0, \ldots, Q\}^2$
- ightharpoonup customer arrivals at time t is $d_t \in \{0,1\}^2$; d_0,\ldots,d_T are IID (zero or one arrival in each queue in each time period)
- server can process one customer from either queue in each time period

action: serve a customer from first or second queue, or neither

$$u_t \in \{(0,0),(0,1),(1,0)\}$$

- lack dynamics is $q_{t+1} = \min((q_t + d_t u_t), Q)$
 - min is component-wise
 - lacktriangledown we'll add constraint that $(u_t)_i=0$ when $(q_t)_i=0$, so $q_{t+1}\geq 0$
- lacktriangledown rejected customers: $r_t = (q_t + d_t u_t Q)_+$
 - $ightharpoonup (r_t)_i = 1$ when $(q_t)_i = Q$, $(d_t)_i = 1$, and $(u_t)_i = 0$
 - $ightharpoonup (r_t)_i = 0$ otherwise

cost function is

$$g_t(q_t, u_t, d_t) = a^T q_t^2 + b^T q_t + c^T r_t + I_{u_t < q_t}(q_t, u_t)$$

- first two terms are queue length costs; third is rejection cost
- lacktriangleright constraint $u_t \leq q_t$ is enforced by stage cost term

$$I_{u_t \leq q_t}(q_t, u_t) = \left\{egin{array}{ll} 0 & u_t \leq q_t \ \infty & ext{otherwise} \end{array}
ight.$$

lacksquare $a,\,b,\,c\in \mathbf{R}_+^2$ are cost coefficients

problem instance:

$$ightharpoonup Q = 5$$
, $T = 100$, $a = (5, 1)$, $b = (1, 10)$, $c = (10, 10)$

queue length	0	1	2	3	4	5
cost (q_1)	0	6		48	84	130
$cost\ (\mathit{q}_2)$	0	11	24	39	56	75

ightharpoonup distribution of d_t is

$$\mathbf{Prob}(d_t = (0,0)) = 0.2$$

 $\mathbf{Prob}(d_t = (0,1)) = 0.15$
 $\mathbf{Prob}(d_t = (1,0)) = 0.45$
 $\mathbf{Prob}(d_t = (1,1)) = 0.2$

(arrivals at queue 1 and queue 2 are not independent)

ightharpoonup **E** $d_t = (0.65, 0.35)$

$$t = 100$$

$$t = 99$$

$$t = 98$$

$$t = 97$$

$$t = 96$$

$$t = 95$$

$$t = 94$$

$$t = 80$$

$$t = 60$$

$$t = 40$$

$$t = 20$$

$$t = 10$$

$$t = 0$$

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 99

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 98

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 97

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 96

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 95

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 80

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 60

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 40

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 30

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

 $\mu_t(\omega) = (1,0), \quad \text{Sign.} \quad \mu_t(\omega) = (0,1)$

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 10

red: $\mu_t^\star(x)=(1,0);$ green: $\mu_t^\star(x)=(0,1)$

t = 0

- starting with both queues empty
- expected cost over time, under the optimal policy

▶ total expected cost is $J^* = 3387$

consider q_1 priority policy, μ^1

• expected cost over time, under policy μ^1

▶ total expected cost is $J^1 = 3632$

time traces: optimal policy μ^{\star} (left), q_1 priority policy μ^1 (right)

Observations

- ightharpoonup for time-invariant dynamics and stage costs, as t goes down
 - the policy appears to converge: $\mu_{t-1} = \mu_t$
 - $ightharpoonup V_t$ seems to converge to a fixed shape, plus an offset:

$$V_{t-1} \approx V_t + \alpha$$

(α is average stage cost)

▶ more on these phenomena later

Outline

Optimal value function and dynamic programming

Proof of optimality

Examples

Dynamic programming for modified information pattern

Dynamic programming for modified information pattern II

DP for modified information pattern

- ightharpoonup suppose w_t is known (as well as x_t) before u_t is chosen
- typical applications: action is chosen after current (random) price, cost, demand, congestion is revealed
- $lackbox{
 ho}$ policy has form $u_t=\mu_t(x_t,w_t),\ \mu_t:\mathcal{X}_t imes\mathcal{W}_t o\mathcal{U}_t$
- can map this into our standard form, but it's more natural to modify DP to handle it directly

Optimal value function when w_t is known

define

$$V_t^\star(x) = \min_{\mu_t, \mu_{t+1}, \dots, \mu_{T-1}} \mathbf{E}\left(\sum_{ au=t}^{T-1} g_ au(x_ au, u_ au, w_ au) + g_T(x_T)
ight| x_t = x
ight)$$

- ightharpoonup minimization is over policies μ_t, \ldots, μ_{T-1} , functions of x and w
- subject to dynamics $x_{t+1} = f_t(x_t, u_t, w_t)$
- $V_t^{\star}(x)$ is expected cost-to-go, using an optimal policy, if you are in state x at time t, before w_t is revealed

Dynamic programming for w_t known

- ightharpoonup define $V_T^\star(x):=g_T(x)$
- for t = T 1, ..., 0,
 - find optimal policy for time t in terms of V_{t+1}^{\star} :

$$\mu_t^\star(x,w) \in \operatorname*{arg\,min}_u \left(g_t(x,u,w) + V_{t+1}^\star(f_t(x,u,w))
ight)$$

▶ find V_t^{\star} using μ_t^{\star} :

$$V_t^\star(x) := \mathbf{E}\left(g_t(x,\mu_t^\star(x,w_t),w_t) + V_{t+1}^\star(f_t(x,\mu_t^\star(x,w_t),w_t))\right)$$
 (expectation is over w_t)

▶ only need to store a value function on \mathcal{X}_t , even though policy is a function on $\mathcal{X}_t \times \mathcal{W}_t$

Outline

Proof of optimality

Examples

Dynamic programming for modified information pattern II

DP for modified information pattern II

- lacktriangledown suppose $w_t = (w_t^{(1)}, w_t^{(2)})$ splits into independent components
- $lackbox{} w_t^{(1)}$ is known (as well as x_t) before u_t is chosen
- $lackbox{} w_t^{(2)}$ is not known before u_t is chosen
- lacksquare policy has form $u_t = \mu_t(x_t, w_t^{(1)}), \ \mu_t: \mathcal{X}_t imes \mathcal{W}_t^{(1)} o \mathcal{U}_t$
- can map this into our standard form, but it's more natural to modify DP to handle it directly

Optimal value function when $w_t^{(1)}$ is known

▶ define

$$V_t^\star(x) = \min_{\mu_t,\mu_{t+1},\dots,\mu_{T-1}} \mathbf{E}\left(\sum_{ au=t}^{T-1} g_ au(x_ au,u_ au,w_ au) + g_T(x_T) \middle| x_t = x
ight)$$

- lacktriangle minimization is over policies μ_t,\ldots,μ_{T-1} , functions of x and $w^{(1)}$
- subject to dynamics $x_{t+1} = f_t(x_t, u_t, w_t)$
- $V_t^{\star}(x)$ is expected cost-to-go, using an optimal policy, if you are in state x at time t, before $w_t^{(1)}$ is revealed

Dynamic programming for $w_t^{(1)}$ known

- lacksquare define $V_T^\star(x):=g_T(x)$
- for t = T 1, ..., 0,
 - find optimal policy for time t in terms of V_{t+1}^{\star} :

$$\mu_t^{\star}(x, w^{(1)}) \in \operatorname*{argmin}_{u} \mathbf{E}\left(g_t(x, u, (w^{(1)}, w_t^{(2)})) + V_{t+1}^{\star}(f_t(x, u, (w^{(1)}, w_t^{(2)})))\right)$$
(expectation is over $w_t^{(2)}$)

• find V_t^* using μ_t^* :

$$V_t^{\star}(x) := \mathbf{E}\left(g_t(x, \mu_t^{\star}(x, w_t^{(1)}), w_t) + V_{t+1}^{\star}(f_t(x, \mu_t^{\star}(x, w_t^{(1)}), w_t))
ight)$$

(expectation is over w_t)

▶ only need to store a value function on \mathcal{X}_t , even though policy is a function on $\mathcal{X}_t \times \mathcal{W}_t^{(1)}$