EE365: Dynamic Programming

Optimal value function and dynamic programming
Proof of optimality

Examples

Dynamic programming for modified information pattern

Dynamic programming for modified information pattern Il

Outline

Optimal value function and dynamic programming

Optimal value function and dynamic programming

Markov decision problem

> dynamics: zz41 = fe(@e, ue, we)
> Zo, Wo, ..., wr—1 independent, with known distributions
» state feedback policy: us = pt(z:)

» we consider deterministic cost for simplicity:

T-—1

J=E Z g¢(ze, ut) + gr(zr)

t=0

» find policy u = (po, ..., ur—1) that minimizes J

> data:
» dynamics functions fo, ..., fr—1
> stage cost functions go,..., gr—1 and terminal cost gr
» distributions of xp, wo,...,wr_1

Optimal value function and dynamic programming

Optimal value function

> define
T-1
Vi(e)= min B[g(e,u)+gr(er) =2
Kt sht41s- 0T —1
T=t
» minimization is over policies p¢, ..., ur—1; Tt+1 = fe(ze, ue, we)

» since z; = z is known, we can just as well minimize over action u; and
policies MKtt1y. .y UT—1-

» V{(z) is expected cost-to-go, using an optimal policy, if you are in state
z at time ¢

> J* =) mo(z) Vo(z) =mo Vg

» V; also called Bellman value function, optimal cost-to-go function

Optimal value function and dynamic programming

Optimal policy

» the policy

pi(z) € argmin (gi(z, v) + E Vi (fi(z, u, we)))

is optimal (we'll show this later)
> expectation is over w;
» can choose any minimizer when minimizer is not unique
» there can be optimal policies not of the form above

» looks circular and useless: need to know optimal policy to find V*
(we'll see later this is not correct)

Optimal value function and dynamic programming

Interpretation

ui(2) € argmin (g:(2, v) + B Vi1 (fi(e, u, we))

assuming you are in state z at time ¢, and take action u
» g:(z,u) (a number) is the current stage cost you pay

> Vi (fi(z, u, we)) (a random variable) is the cost-to-go from where you
land, if you follow an optimal policy for t +1,..., T —1

» E V5 (fi(z, w, wt)) (a number) is the expected cost-to-go from where

you land

optimal action is to minimize sum of current stage cost and expected
cost-to-go from where you land

Optimal value function and dynamic programming

Greedy policy

> greedy policy is u$"(z) € argmin, g:(z,)

> at any state, minimizes current stage cost without regard for effect of
current action on future states

» in optimal policy

Ki(z) € argmin (g:(z, u) + E Vi (fi(z, v, wr)))

second term summarizes effect of current action on future states

Optimal value function and dynamic programming

Dynamic programming

» define Vi(z) := gr(z)
» fort=T-1,...,0,
» find optimal policy for time t in terms of th_l:
wi(z) € argmin (gi(2, w) + B Vi (A=, u,we)))

> find V¥ using u}:
Vi (2) := gi(z, pi(2)) + E Vi (Fi(e, pi(2), we))

» a recursion that runs backward in time

» complexity is T'|X||U||W| operations (fewer when P is sparse)

Optimal value function and dynamic programming

Variations

» random costs:
#’?(m) € a'rgminu E (gt(a:: u, wt) + Vtil(ft(zy u, wt)))
Vi (z) := E gi(z, pi(z), w) + B Vi (filz, i (z), we))
> state-action separable cost g:(z, u) = g:(z) + r(u):
pt(z) € argmin, (r:(v) + E V4,1 (filz, v, wt)))
Vi(z) == qi(z) + re(pi(2) + E Vi (filz, wi(z), wr))
» deterministic system:
wi(z) € argmin, (g:(z, v) + Vi, (fi(z, w)))
Vi(z) = gi(z, pi(2)) + Vi (filz, ui(2)))

Optimal value function and dynamic programming

Outline

Proof of optimality

Proof of optimality

10

Bellman operator

v

v

deterministic cost case for simplicity

define Bellman or dynamic programming operator T; as
Ti(h)(z) = min (gi(z, v) + Eh(fi(z, u, w)))
for any h : X — R (expectation is over w;)
then we have V7 = gr, and
Vi =TuV,), t=T-1,...,0
for policy p} we have
Vi'(z) = g¢(z, pi(z)) + E Vi1 (fi(z, pi(z), w)), t=T-1,...,0

this is value iteration for evaluating J*, so J* = mo V§

Proof of optimality

11

Monotonicity of Bellman operator

» Bellman operator is monotone:
h<h = Ti(h) < Ti(h)
(inequalities mean for all)
> to see this, assume h < h; note that for any z and wu,
gi(e,u) + ER(fi(z, u, w)) < gele, v) + ER(fi(z, u, w))
(by monotonicity of expectation)
» minimizing each side over u (and using monotonicity of minimization)

Ti(h)(z) < Te(h)(2)

Proof of optimality 12

Proof of optimality

> let u be any policy, with cost J#, and value functions V}*

» we will show that J¥ > J*, which shows p* is optimal

» forany h: X — R, we have
g:(z, pe(2)) + Eh(fi(z, pe(2), we)) 2 Te(h)(2)
since RHS minimizes LHS over all choices of u = u:(z)

» value functions with policy p satisfy V& = gr and

9t(z, ue(z)) + E VE, (filz, pe(z), we))
> T thfi-l)(z)

V{(z)

Proof of optimality

13

Proof of optimality

> using Vi = Ti(Vi), VI > Ti(VE,L), and Vi = Vi = gr,
v %(Vtil)
TeTer(VE)

v v

TeTegr - Tr=1(VE)
= 7_t7_t+1"'TT—1(gT)
= vV

» andso J¥ =mo V' > mo Vi = J*

Proof of optimality

Summary

» any policy defined by dynamic programming is optimal
> (can replace ‘any’ with 'the’ when the argmins are unique)
» V* is minimal for any ¢, over all policies (i.e., Vi* < V)

> there can be other optimal (but pathological) policies; for example we
can set uo(z) to be anything you like, provided mo(z) = 0

Proof of optimality

15

Outline

Examples

Examples

16

Example: Inventory model

(our old friend) the inventory model

» z: € {0,1,...,6}; 20 =6

> Ty = — dp + U

» Prob(d; = 0,1,2) = (0.7,0.2,0.1)

> gi(z,u) =sz+ olyse, s=0.1,0=1

» add constraints 2 — z; < uz <6 — z; (so zz41 € {0,1,...,6} for any d;)
» recall heuristic policy: refill if z; <1

(z) = 6—z x2z=0o0r1l
HE)=13 o otherwise

Examples

Example: Inventory model

Examples

18

Example: Inventory model

Examples

18

Example: Inventory model

Examples

18

Example: Inventory model

*
Va7

Examples

241 7

18

Example: Inventory model

271

Examples

18

Example: Inventory model

Examples

18

Example: Inventory model

*
Va0

Examples

Example: Inventory model

Examples

18

Example: Inventory model

Examples

18

Example: Inventory model

» optimal policy vs. heuristic policy

4 4 4
3 3 3
0 0 0
#*: 0 0 0 , heur:
0 0 0
0 0 0
L0 0 0 | i

> expected total costs: J* = 20.83, J2eUr = 23.13

» heuristic policy over-orders!

Examples

O O O O o oot o
O O O oo oo
O O O O o oo

Example: Queue serving

g1

[*}]

> two queues, each with maximum queue length @
> queue lengths at time t is g; € {0,..., @}*

> customer arrivals at time t is d; € {0,1}?; do, ..., dr are IID
(zero or one arrival in each queue in each time period)

> server can process one customer from either queue in each time period

Examples

20

Example: Queue serving

» action: serve a customer from first or second queue, or neither

w € {(0,0),(0,1),(1,0)}
» dynamics is ge+1 = min((g: + dt — wt), @)
> min is component-wise
> we'll add constraint that (ut); = 0 when (g¢); =0, so gi+1 > 0
> rejected customers: 7 = (gt + de — ur — Q)+
> (rt)i =1 when (gt)i = Q, (dt);i =1, and (ut); =0

> (7¢); = 0 otherwise

Examples

21

Example: Queue serving

» cost function is

gt(ge,ue, de) = a" g + " g+ T v+ Li<q (g, ue)
» first two terms are queue length costs; third is rejection cost
» constraint u; < g; is enforced by stage cost term

0 Ut S qt
oo otherwise

Iutﬁth(qt) ut) = {

> a,b,c €RZ are cost coefficients

Examples

22

Example: Queue serving

problem instance:
1,10), ¢ = (10, 10)

» Q=5 T =100, a =(5,1),
\ 2 3 4 5

queue length

cost (

(

1

Q) 6 22 48 84 130
cost (g2) 1

b=
0
0
0 1 24 39 56 75

» distribution of d; is

Prob(d: = (0,0)) = 0.2
Prob(d: = (0,1)) =0.15
Prob(d: = (1,0)) = 0.45
Prob(d: = (1,1)) = 0.2

(arrivals at queue 1 and queue 2 are not independent)

» E d; = (0.65,0.35)

Examples

23

Example: Queue serving

t =100

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

Examples

24

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =099

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =08

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=97

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =096

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=095

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =80

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =60

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =40

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t =30

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=20

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=10

Examples

25

Example: Queue serving

red: pi(z) = (1,0); green: pi(z) = (0,1)
t=0

Examples

25

Example: Queue serving

» starting with both queues empty

> expected cost over time, under the optimal policy

|| —queue 1

35 ——queue 2

30 —rejection
25
20
15
10
5
0

20 40 60 80 100
t

> total expected cost is J* = 3387

Examples

26

Example: Queue serving

consider gy priority policy,

Examples

27

Example: Queue serving

> expected cost over time, under policy u?

|| —queue 1
35 ——queue 2 /

—rejection
30

25

20 40 60

> total expected cost is J! = 3632

Examples

Example: Queue serving

time traces: optimal policy p* (left),

q1 priority policy u* (right)

5
U —queue 1 v V
4 ——queue 2 4
3r 3
2r 2
1r 1
0 0
0 20 40 60 80 100 0 20 40 60 80 100

Examples

29

Observations

» for time-invariant dynamics and stage costs, as ¢t goes down
> the policy appears to converge: pi—1 = pt
> V; seems to converge to a fixed shape, plus an offset:
Vicim Vita

(e is average stage cost)

» more on these phenomena later

Examples

30

Outline

Dynamic programming for modified information pattern

Dynamic programming for modified information pattern

31

DP for modified information pattern

» suppose w; is known (as well as z;) before u; is chosen

> typical applications: action is chosen after current (random) price, cost,
demand, congestion is revealed

» policy has form us = pe(ze, we), pe = X X We = Uy

» can map this into our standard form, but it's more natural to modify DP
to handle it directly

Dynamic programming for modified information pattern

32

Optimal value function when w; is known

» define
T—1
% .
Vie)= min B[g(er,u,w)+gr(er)| e =2
Htshtt1 e hT—1
T=t
> minimization is over policies y¢,...,ur_1, functions of z and w

> subject to dynamics Tt41 = ft(CEt, Ut, ’I.Ut)

> V{(z) is expected cost-to-go, using an optimal policy, if you are in state
z at time t, before w; is revealed

Dynamic programming for modified information pattern 33

Dynamic programming for w; known

> define V3(z) := gr(z)
» fort=T-1,...,0,
> find optimal policy for time ¢ in terms of V7, ,:
wr(z,w) € argmin (gt(m, u, w) + Vi, (fi(z, v, w)))
u
> find VX using p}:

Vt*(x) = E (gt(w: /J'?(I: wt)! wt) + Vtﬁ-l(ft(znu?(xx wt)! wt)))

(expectation is over w)

» only need to store a value function on X%, even though policy is a
function on X x Wk

Dynamic programming for modified information pattern

34

Outline

Dynamic programming for modified information pattern Il

Dynamic programming for modified information pattern Il

35

DP for modified information pattern Il

1 ,,@
t

» suppose wy = (w; ', w,"’) splits into independent components

1) . .
> wt() is known (as well as z¢) before u; is chosen

> wt(z) is not known before u; is chosen
» policy has form u; = pe(z, wt(l)), Mt X X Wt(l) — Ut

» can map this into our standard form, but it's more natural to modify DP
to handle it directly

Dynamic programming for modified information pattern Il 36

Optimal value function when wt(l) is known

» define
T—1
Vi@)= min B[gz, u,w)+gr(er)|w =2
Htshtd 1y hT—1
T=t
> minimization is over policies u¢,...,u7r—1, functions of z and w(®)

> subject to dynamics Tt41 = ft(:Et, Ut, ’I.Ut)

» V{(z) is expected cost-to-go, using an optimal policy, if you are in state

z at time t, before wt(l) is revealed

Dynamic programming for modified information pattern Il

37

Dynamic programming for wt(l) known
» define Vi(z) := gr(z)
» fort=T-1,...,0,
» find optimal policy for time t in terms of th_l:
bi(e,w®) € argmin® (a(e, w, (0, w)) + Ve (o (0, w))))
u
(expectation is over wt(2))
> find V using p}:
VF — B * (1) v * (1)
i(z): gt(e, pi(z,w; ") we) + Vi (e, wi (2, w,0), we))
(expectation is over wt)

» only need to store a value function on X%, even though policy is a
function on X; x Wt(l)

Dynamic programming for modified information pattern Il 38

	Optimal value function and dynamic programming
	Proof of optimality
	Examples
	Dynamic programming for modified information pattern
	Dynamic programming for modified information pattern II

