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About the course

I EE365 is the same as MS&E251

I created by Ben Van Roy, Sanjay Lall, and Stephen Boyd last year

I taught by Sanjay Lall and Stephen Boyd this year
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Requirements & prerequisites

I class attendance

I homework assigned asynchronously as we make it up

I 24 hour take-home exam (as in EE263, EE364a)

I willingness to program in matlab or python

I �exibility/tolerance, since it's a new(ish) course

I prerequisites:

I linear algebra (EE263 or MS&E211; more than Math 51)

I probability (EE178/278A or MS&E220)
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It's a new(ish) course

I we'll make mistakes (in lectures, homework, . . . )

I notation will be inconsistent

I notes/slides will change often

I if disorganization bothers you, or you're squeamish about seeing

professors make mistakes, wait until next year
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Stochastic control

I multi-step decision making, in an uncertain dynamic environment

I act; learn/observe; act; learn/observe, . . .

I your current action a�ects the future

I there is uncertainty in what the e�ect of your action will be

I goal is to �nd policy

I what you do in any situation

I map from what you know to what you do

I key concept is recourse (a.k.a. feedback):

taking corrective action based on new information

I richer concept than optimization
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Applications

I multi-period investment

I automatic control

I supply chain optimization

I internet ad display

I revenue management

I operation of a smart grid

I data center operation

. . . and many, many others
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Optimization problem

minimize f (x )

subject to x 2 X

I x is decision variable (discrete, continuous)

I X is constraint set

I f : X ! R is objective (cost function)

I x is feasible if x 2 X

I x is optimal (or a solution) if f (x ) = infz2X f (z )

I f and X can depend on parameters (data)

I can maximize by minimizing �f (reward, utility, pro�t, . . . )

I standard trick: allow f (x ) =1 (to embed further constraints in

objective)
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Solving optimization problems

I a solution method or algorithm computes a solution, given parameters

I di�culty of solving optimization problem depends on

I mathematical properties of f , X

I problem size (e.g., dimension of x when x 2 Rn )

I a few problems can be solved `analytically'

I but this is not particularly relevant, since we adopt algorithmic approach
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Examples

I �nd shortest path on weighted graph from node S to node T

I x is path

I f (x ) is weighted path length (sum of weights on edges)

I X is set of paths from S to T

I allocate a total resource B among n entities to maximize total pro�t

I x 2 Rn gives allocation

I (maximize) objective f (x ) =
P

n

i=1
Pi (xi )

I Pi (xi ) is pro�t of entity i given resource amount xi

I X = fx j x � 0; 1
T x = Bg
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(Deterministic) dynamic system

xt+1 = ft (xt ;ut ); t = 0; 1; : : :

I t is time (epoch, stage, period)

I xt 2 Xt is state

I initial state x0 is known or given

I ut 2 Ut is input (action, decision, choice, control)

I ft : Xt � Ut ! Xt+1 is state transition function

I called time-invariant if ft , Xt , Ut don't depend on t

I variation: Ut can depend on xt
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Idea of state

I current action a�ects future states, but not current or past states

I current state depends on past actions

I state is link between past and future

I if you know state xt and actions ut ; : : : ; us�1, you know xs

I u0; : : : ; ut�1 not relevant

I state is su�cient statistic (summary) for past
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Examples (with �nite state and inputs spaces)

discrete dynamical system:

I X = f1; : : : ;ng, U = f1; : : : ;mg

I ft : X � U ! X called transition map, given by table (say)

moving on directed graph (V; E):

I X = V, U(xt ) is set of out-going edges from xt

I ft (xt ;ut ) = v , where ut = (xt ; v)
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Examples (with in�nite state and input spaces)

linear dynamical system:

I X = R
n , U = R

m

I xt+1 = ft (xt ;ut ) = Atxt + Btut + ct

very special form for dynamics, but arises in many applications
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Dynamic optimization (deterministic optimal control)

minimize J =
P

T�1

t=0
gt (xt ;ut ) + gT (xT )

subject to xt+1 = ft (xt ;ut ); t = 0; : : : ;T � 1

I initial state x0 is given

I gt : Xt � Ut ! R [ f1g is stage cost function

I gT : XT ! R [ f1g is terminal cost function

I variables are x1; : : : ; xT , u0; : : : ;uT�1
(or just u0; : : : ;uT�1, since these determine x1; : : : ; xT )

I just an optimization problem (possibly big)

I also called classical or open-loop control
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Deterministic optimal control

I addresses dynamic e�ect of actions across time

I no uncertainty or randomness in model

I is widely used (often, by simply ignoring uncertainty in the application)
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Stochastic dynamic system

xt+1 = ft (xt ;ut ;wt ); t = 0; 1; : : :

I wt are random variables (usually assumed independent for t 6= s)

I state transitions are nondeterministic, uncertain

I choice of input ut determines distribution of xt+1

I initial state x0 is random variable (usually assumed independent of

w0;w1; : : :)
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Objective

I objective (to be minimized) is

J = E

 
T�1X
t=0

gt (xt ;ut ;wt ) + gT (xT ;wT )

!

I gt : Xt � Ut �Wt ! R [ f1g is stage cost function

I gT : XT �WT ! R [ f1g is terminal cost function

I often gt , gT don't depend on wt , i.e., stage and terminal costs are

deterministic

I in�nite values of gt encode constraints

I objective is mean total stage cost plus terminal cost
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Information pattern constraints

I information pattern constraint: ut depends on what you know at time t

ut = �t (Zt )

I Zt is what you know at time t

I (�0; : : : ; �T�1) is called policy

I goal is to �nd policy that minimizes J , subject to dynamics
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Information patterns

I full knowledge (prescient): Zt = (w0; : : : ;wT�1)

I for each realization, reduces to deterministic optimal control problem

I no knowledge: Zt = ;

I reduces to an optimization problem; called open-loop

I in between: Zt = xt (called state feedback)

I a little more: Zt = (xt ;wt )

these are very di�erent problems!
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Example: Stochastic shortest path

I move from node S to node T in directed weighted graph

I minimize expected total weight along path

I edge weights are random variables, independent in each time period

information patterns:

I no knowledge: commit to path beforehand

(knowing distributions of weights, but not actual values)

I full knowledge: weights on all edges at all times are revealed before path

is chosen

I local knowledge: at each node, at each time, weights of out-going edges

are revealed before next edge on path is chosen
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Example: Optimal disposition of stock

I sell a total amount S of a stock in T periods

I price (and transaction cost) varies randomly

I maximize expected revenue

information patterns:

I no knowledge: commit to sales amounts beforehand

I in each time period, the price and transaction cost is known before

amount sold is chosen
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Stochastic shortest path example

1 2 n− 1 n

I chain of n = 100 nodes

I move from node 1 to node n in T = 300 steps

I random edge weights (say, delays) in each period (including self-loops)

I can only move forward, stay put, or move backward

I minimize total expected delay
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Information patterns

three di�erent information patterns:

1. open loop: only know delay statistics

2. prescient: know everything (delays on all edges, all times)

3. local: at each time, know outgoing delays at current node

(including self-loop)
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Trajectories

sample trajectory under optimal policy for each information pattern

(open loop, local, prescient)
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Delay distributions

delay distributions for each information pattern (open loop, local, prescient)
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clearly shows value of information, recourse
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Example: Vehicle intercept

I vehicle moving in R2, with linear dynamics

xt+1 = Axt + But ; pt = Cxt ; t = 0; 1; : : :

I pt 2 R
2 is the vehicle position at time t

I vehicle must reach one of K (equally likely) destinations at time t = T

(terminal constraint is random)

I destination is revealed at time t =M :

I u0; : : : ; uM�1 are chosen without knowledge of �nal destination

I uM ; : : : ; uT�1 can depend on the �nal destination

I minimize E
P

T�1

t=0
kutk

2

2
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Optimal policy

M = 0; T = 120; optimal cost 0:000006
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Optimal policy

M = 30; T = 120; optimal cost 0:000011
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Optimal policy

M = 60; T = 120; optimal cost 0:000049
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Optimal policy

M = 90; T = 120; optimal cost 0:001108
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Optimal policy

M = 110; T = 120; optimal cost 0:063338

Stochastic control 31


	About the course
	Optimization
	Dynamic system
	Stochastic control

