EE365: Linear Quadratic Stochastic Control

Continuous state Markov decision process

Affine and quadratic functions

Linear quadratic Markov decision process

Linear quadratic regulator

Linear quadratic trading

Outline

Continuous state Markov decision process

Affine and quadratic functions

Linear quadratic Markov decision process

Linear quadratic regulator

Linear quadratic trading

Continuous state Markov decision process

Continuous state Markov decision problem

- dynamics: $x_{t+1} = f_t(x_t, u_t, w_t)$
- \triangleright x_0, w_0, w_1, \ldots independent
- stage cost: $g_t(x_t, u_t, w_t)$
- (state feedback) policy: $u_t = \mu_t(x_t)$
- choose policy to minimize

$$J = \mathbf{E}\left(\sum_{t=0}^{T-1} g_t(x_t, u_t, w_t) + g_T(x_T)
ight)$$

• we consider the case
$$\mathcal{X} = \mathbf{R}^n$$
, $\mathcal{U} = \mathbf{R}^m$

Continuous state Markov decision process

Continuous state Markov decision problem

- many (mostly mathematical) pathologies can occur in this case
 - but not in the special case we'll consider
- ▶ a basic issue: how do you even *represent* the functions f_t , g_t , and μ_t ?
 - for n and m very small (say, 2 or 3) we can use gridding
 - we can give the coefficients in some (dense) basis of functions
 - most generally, we assume we have a method to compute function values, given the arguments
 - > exponential growth that occurs in gridding is called *curse of dimensionality*

Continuous state Markov decision problem: Dynamic programming

- ▶ this gives value functions and optimal policy, in principle only
- \blacktriangleright but you can't in general represent, much less compute, V_t or μ_t

Continuous state Markov decision problem: Dynamic programming

for DP to be tractable, f_t and g_t need to have special form for which we can

- represent V_t , μ_t in some tractable way
- carry out expectation and minimization in DP recursion

one of the few situations where this holds: linear quadratic problems

- ▶ f_t is an affine function of x_t , u_t ('linear dynamical system')
- g_t are convex quadratic functions of x_t , u_t

Linear quadratic problems

for linear quadratic problems

- value functions V_t^{\star} are quadratic
- hence representable by their coefficients
- we can carry out the expectation and the minimization in DP recursion explicitly using linear algebra
- \blacktriangleright optimal policy functions are affine: $\mu_t^\star(x) = K_t x + l_t$
- we can compute the coefficients K_t and l_t explicitly

in other words:

we can solve linear quadratic stochastic control problems in practice

Outline

Continuous state Markov decision process

Affine and quadratic functions

Linear quadratic Markov decision process

Linear quadratic regulator

Linear quadratic trading

Affine and quadratic functions

Affine functions

• $f: \mathbf{R}^p \to \mathbf{R}^q$ is affine if it has the form

$$f(x) = Ax + b$$

i.e., it is a linear function plus a constant

- ▶ a linear function is special case, with b = 0
- affine functions closed under sum, scalar multiplication, composition (with explicit formulas for coefficients in each case)

Quadratic function

•
$$f: \mathbf{R}^n \to \mathbf{R}$$
 is quadratic if it has the form

$$f(x) = (1/2)x^{T}Px + q^{T}x + (1/2)r$$

with $P = P^T \in \mathbf{R}^{n \times n}$ (the 1/2 on r is for convenience)

• often write as quadratic form in (x, 1):

$$f(x) = (1/2) \left[egin{array}{c} x \ 1 \end{array}
ight]^T \left[egin{array}{c} P & q \ q^T & r \end{array}
ight] \left[egin{array}{c} x \ 1 \end{array}
ight]$$

▶ special cases:

- quadratic form: q = 0, r = 0
- affine (linear) function: P = 0 (P = 0, r = 0)
- constant: P = 0, q = 0

• uniqueness:
$$f(x) = ilde{f}(x) \iff P = ilde{P}, \ q = ilde{q}, \ r = ilde{r}$$

Affine and quadratic functions

Calculus of quadratic functions

• quadratic functions on \mathbf{R}^n form a vector space of dimension

$$\frac{n(n+1)}{2} + n + 1$$

▶ *i.e.*, they are closed under addition, scalar multiplication

Composition of quadratic and affine functions

suppose

• $f(z) = (1/2)z^T P z + q^T z + (1/2)r$ is quadratic function on \mathbf{R}^m

• g(x) = Ax + b is affine function from \mathbf{R}^n into \mathbf{R}^m

- ▶ then composition $h(x) = (f \circ g)(x) = f(Ax + b)$ is quadratic
- ▶ write h(x) as

$$(1/2) \left[egin{array}{c} x \\ 1 \end{array}
ight]^T \left(\left[egin{array}{c} A & b \\ 0 & 1 \end{array}
ight]^T \left[egin{array}{c} P & q \\ q^T & r \end{array}
ight] \left[egin{array}{c} A & b \\ 0 & 1 \end{array}
ight]
ight) \left[egin{array}{c} x \\ 1 \end{array}
ight]$$

 \blacktriangleright so matrix multiplication gives us the coefficient matrix of h

Affine and quadratic functions

Convexity and nonnegativity of a quadratic function

- ▶ f is convex (graph does not curve down) if and only if P ≥ 0 (matrix inequality)
- ▶ f is strictly convex (graph curves up) if and only if P > 0 (matrix inequality)
- ▶ f is nonnegative (*i.e.*, $f(x) \ge 0$ for all x) if and only if

$$\left[egin{array}{cc} P & q \ q^T & r \end{array}
ight] \geq 0$$

- f(x) > 0 if and only if matrix inequality is strict
- ▶ nonnegative ⇒ convex

Checking convexity and nonnegativity

- ▶ we can check convexity or nonnegativity in O(n³) operations by eigenvalue decomposition, Cholesky factorization, ...
- composition with affine function preserves convexity, nonnegativity:

f convex, g affine $\implies f \circ g$ convex

- linear combination of convex quadratics, with nonnegative coefficients, is convex quadratic
- if f(x, w) is convex quadratic in x for each w (a random variable) then

$$g(x) = \mathop{\mathbf{E}}_w f(x, w)$$

is convex quadratic (*i.e.*, convex quadratics closed under expectation)

Minimizing a quadratic

- if f is not convex, then $\min_x f(x) = -\infty$
- otherwise, x minimizes f if and only if $\nabla f(x) = Px + q = 0$
- for $q \notin \operatorname{range}(P)$, $\min_x f(x) = -\infty$
- for P > 0, unique minimizer is $x = -P^{-1}q$
- minimum value is

$$\min_{x} f(x) = -(1/2) q^{T} P^{-1} q + (1/2) r$$

(a concave quadratic function of q)

▶ for case $P \ge 0$, $q \in \operatorname{range}(P)$, replace P^{-1} with P^{\dagger}

Affine and quadratic functions

Partial minimization of a quadratic

- suppose f is a quadratic function of (x, u), convex in u
- then the partial minimization function

$$g(x) = \min_{u} f(x, u)$$

is a quadratic function of x; if f is convex, so is g

- the minimizer $\operatorname{argmin}_{u} f(x, u)$ is an affine function of x
- minimizing a convex quadratic function over some variables yields a convex quadratic function of the remaining ones
- ▶ *i.e.*, convex quadratics closed under partial minimization

Partial minimization of a quadratic

▶ let's take

$$f(x, u) = (1/2) \left[egin{array}{c} x \ u \ 1 \end{array}
ight]^T \left[egin{array}{c} P_{xx} & P_{xu} & q_x \ P_{ux} & P_{uu} & q_u \ q_x^T & q_x^T & r^T \end{array}
ight] \left[egin{array}{c} x \ u \ 1 \end{array}
ight]$$

with $P_{uu} > 0$, $P_{ux} = P_{xu}^T$

• minimizer of f over u satisfies

$$0=\nabla_u f(x,u)=P_{uu}u+P_{ux}x+q_u$$

so $u = -P_{uu}^{-1}(P_{ux}\,x + q_u)$ is an affine function of x

Affine and quadratic functions

Partial minimization of a quadratic

• substituting u into expression for f gives

$$g(x) = (1/2) \begin{bmatrix} x \\ 1 \end{bmatrix}^T \begin{bmatrix} P_{xx} - P_{xu}P_{uu}^{-1}P_{ux} & q_x - P_{xu}P_{uu}^{-1}q_u \\ q_x^T - q_u^T P_{uu}^{-1}P_{ux} & r - q_u P_{uu}^{-1}q_u \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

▶ $P_{xx} - P_{xu}P_{uu}^{-1}P_{ux}$ is the Schur complement of P w.r.t. u

•
$$P_{xx} - P_{xu}P_{uu}^{-1}P_{ux} \ge 0$$
 if $P \ge 0$

 \blacktriangleright or simpler: g is composition of f with affine function $x\mapsto (x,u)$

$$\left[egin{array}{c} x \ u \end{array}
ight] = \left[egin{array}{c} I \ -P_{uu}^{-1}P_{ux} \end{array}
ight] x + \left[egin{array}{c} 0 \ -P_{uu}^{-1}q_{u} \end{array}
ight]$$

- we already know how to form composition quadratic (affine)
- and the result is convex

Affine and quadratic functions

Summary

convex quadratics are closed under

- ▶ addition
- ▶ expectation
- pre-composition with an affine function
- partial minimization

in each case, we can explicitly compute the coefficients of the result using linear algebra

Outline

Continuous state Markov decision process

Affine and quadratic functions

Linear quadratic Markov decision process

Linear quadratic regulator

Linear quadratic trading

Linear quadratic Markov decision process

(Random) linear dynamical system

- dynamics $x_{t+1} = f_t(x_t, u_t, w_t) = A_t(w_t)x_t + B_t(w_t)u_t + c_t(w_t)$
- for each w_t , f_t is affine in (x_t, u_t)
- ▶ x₀, w₀, w₁, . . . are independent
- $A_t(w_t) \in \mathbf{R}^{n \times n}$ is dynamics matrix
- $B_t(w_t) \in \mathbf{R}^{n \times m}$ is input matrix
- $c_t(w_t) \in \mathbf{R}^n$ is offset

Linear quadratic stochastic control problem

- ▶ stage cost $g_t(x_t, u_t, w_t)$ is convex quadratic in (x_t, u_t) for each w_t
- choose policy $u_t = \mu_t(x_t)$ to minimize objective

$$J = \mathbf{E}\left(\sum_{t=0}^{T-1} g_t(x_t, u_t, w_t) + g_T(x_T)
ight)$$

Dynamic programming

- \blacktriangleright all V_t are convex quadratic, and all μ_t are affine
- this gives value functions and optimal policy, explicitly

Dynamic programming

we show V_t are convex quadratic by (backward) induction

- ▶ suppose V_T, \ldots, V_{t+1} are convex quadratic
- since f_t is affine in (x, u), $V_{t+1}(f_t(x, u, w_t))$ is convex quadratic
- so $g_t(x, u, w_t) + V_{t+1}(f_t(x, u, w_t))$ is convex quadratic
- \blacktriangleright and so is its expectation over w_t
- \blacktriangleright partial minimization over u leaves convex quadratic of x, which is $V_t(x)$
- \blacktriangleright argmin is affine function of x, so optimal policy is affine

Linear equality constraints

▶ can add (deterministic) linear equality constraints on x_t , u_t into g_t , g_T :

$$g_t(x,u,w) = g_t^{ ext{quad}}(x,u,w) + \left\{egin{array}{cc} 0 & F_tx+G_tu = h_t\ \infty & ext{otherwise} \end{array}
ight.$$

- everything still works:
 - \blacktriangleright V_t is convex quadratic, possibly with equality constraints
 - \blacktriangleright μ_t is affine
- reason: minimizing a convex quadratic over some variables, subject to equality constraints, yields a convex quadratic in remaining variables

Infinite horizon linear quadratic problems

- consider average stage cost problems (others are similar) with time-invariant dynamics and stage costs
- same as for finite state case: use value iteration

• set
$$V_0(x) = 0$$
; for $k = 0, 1, ...,$

$$egin{aligned} & \mu_{k+1}(x) = rgmin_u \, \mathbf{E} \left(g(x,\, u,\, w_t) + \, V_k(f(x,\, u,\, w_t))
ight) \ & V_{k+1}(x) = \mathbf{E} \left(g(x, \mu_{k+1}(x),\, w_t) + \, V_k(f(x, \mu_{k+1}(x),\, w_t))
ight) \end{aligned}$$

 \blacktriangleright can be carried out concretely, since V_k is quadratic, μ_k is affine

Optimal steady-state policy

- ▶ $\mu_k
 ightarrow \mu^\star$ (ITAP), a.k.a. steady-state policy $\mu^\star(x) = K^\star x + l^\star$
- K^{\star} (l^{\star}) called (steady-state, average cost) optimal gain matrix (offset)
- ▶ $V_k(x) V_k(x') \rightarrow V^{\mathrm{rel}}(x)$, relative value function (ITAP)
 - x' is (arbitrary) reference state
 - V^{rel} defined only up to a constant
- \blacktriangleright $V_{k+1}(x) V_k(x)
 ightarrow J^{\star}$, the optimal average cost, for any x

Outline

Continuous state Markov decision process

Affine and quadratic functions

Linear quadratic Markov decision process

Linear quadratic regulator

Linear quadratic trading

Linear quadratic regulator

$$x_{t+1} = A_t x_t + B_t u_t + w_t$$

$$\blacktriangleright \mathbf{E} w_t = \mathsf{0}, \ \mathbf{E} w_t w_t^T = W_t$$

stage cost is (convex quadratic)

$$(1/2)(x_t^T Q_t x_t + u_t^T R_t u_t)$$

with $Q_t \geq 0$, $R_t > 0$

- \blacktriangleright terminal cost $(1/2)x_T^T Q_T x_T, \ Q_T \geq 0$
- \blacktriangleright variation: terminal constraint $x_T = 0$

Linear quadratic regulator: DP

value functions are quadratic plus constant (linear terms are zero):

$$V_t(x) = (1/2)(x^T P_t x + r_t)$$

- $\blacktriangleright P_T = Q_T, \ r_T = 0$
- optimal expected tail cost:

$$egin{array}{lll} {f E} & V_{t+1}(f_t(x,u,w_t)) \ &= (1/2)(r_{t+1} + {f E}(A_tx + B_tu + w_t)^T P_{t+1}(A_tx + B_tu + w_t)) \ &= (1/2)(r_{t+1} + (A_tx + B_tu)^T P_{t+1}(A_tx + B_tu) + {f Tr}(P_{t+1}W_t)) \end{array}$$

using $\mathbf{E} w_t = 0$ and

$$\mathbf{E} \ \boldsymbol{w_t}^T \boldsymbol{P}_{t+1} \ \boldsymbol{w_t} = \mathbf{E} \ \mathbf{Tr}(\boldsymbol{P}_{t+1} \ \boldsymbol{w_t} \ \boldsymbol{w_t}^T) = \mathbf{Tr}(\boldsymbol{P}_{t+1} \ \boldsymbol{W_t})$$

Linear quadratic regulator: DP

minimize over u to get optimal policy:

$$\begin{array}{lll} \mu_t(x) & = & \operatorname*{argmin}_u \left(u^T R_t u + u^T B_t^T P_{t+1} B_t u + 2 (B_t^T P_{t+1} A_t x)^T u \right) \\ & = & - \left(R_t + B_t^T P_{t+1} B_t \right)^{-1} B_t^T P_{t+1} A_t x \\ & = & K_t x \end{array}$$

optimal policy is linear (as opposed to affine)

$$V_t(x) = (1/2)(r_{t+1} + {
m Tr}(P_{t+1}\,W_t) + x^{\, { T}}(Q_t + K_t^{\, { T}}R_t\,K_t)x + x^{\, { T}}(A_t + B_tK_t)^{\, { T}}P_{t+1}(A_t + B_tK_t)x)$$

 \blacktriangleright so coefficients of V_t are

$$P_t = Q_t + K_t^T R_t K_t + (A_t + B_t K_t)^T P_{t+1} (A_t + B_t K_t),$$

 $r_t = r_{t+1} + \operatorname{Tr}(P_{t+1} W_t)$

Linear quadratic regulator: Riccati recursion

▶ set
$$P_T = Q_T$$

• for t = T - 1, ..., 0

$$\begin{aligned} K_t &= -(R_t + B_t^T P_{t+1} B_t)^{-1} B_t^T P_{t+1} A_t \\ P_t &= Q_t + K_t^T R_t K_t + (A_t + B_t K_t)^T P_{t+1} (A_t + B_t K_t) \end{aligned}$$

- > called Riccati recursion; gives optimal policies, which are linear functions
- surprise: optimal policy does not depend on the disturbance distribution (provided it is zero mean)

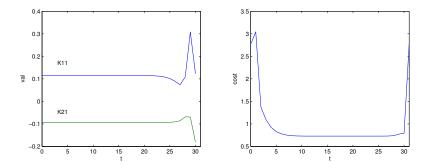
•
$$J^{\star} = (1/2)(\mathbf{Tr}(P_0X_0) + \sum_{t=0}^{T-1}\mathbf{Tr}(P_{t+1}W_t))$$
, where $X_0 = \mathbf{E}(x_0x_0^T)$

Linear quadratic regulator: Example

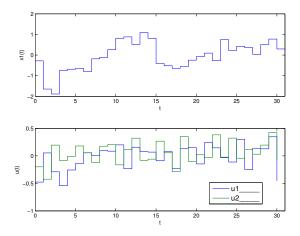
- n = 5 states, m = 2 inputs, horizon T = 31
- A, B chosen randomly; A scaled so $\max_i |\lambda_i(A)| = 1$
- $Q_t = I$, $R_t = I$, t = 0, ..., T 1, $Q_T = 5I$
- $x_0 \sim \mathcal{N}(0, X_0), X_0 = I$
- $w_t \sim \mathcal{N}(0, W), W = 0.1I$

Linear quadratic regulator: Example

left: $(K_t)_{11}$, $(K_t)_{21}$ vs. t; right: **E** J_t vs. t



Linear quadratic regulator: Sample trajectory



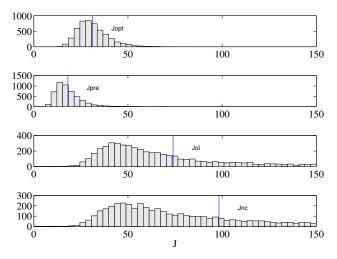
Linear quadratic regulator: Cost comparison

compare cost for

- ▶ optimal policy, J*
- ▶ prescient policy, J^{pre} : $w_0 \ldots, w_T$ known in advance
- ▶ open loop policy, $J^{\circ 1}$: choose u_0, \ldots, u_T with knowledge of x_0 only
- ▶ no control (1-step greedy), J^{nc} : $u_0, \ldots, u_T = 0$

Linear quadratic regulator: Cost comparison

total stage cost histograms, N = 5000 Monte Carlo simulations



Linear quadratic regulator

Steady-state linear quadratic regulator

- average cost case, all data time-invariant
- use Riccati recursion to find steady-state (average cost) optimal policy:

$$\begin{split} K_{k+1} &= -(R+B^T P_k B)^{-1} B^T P_k A \\ P_{k+1} &= Q+K_{k+1}^T R K_{k+1} + (A+B K_{k+1})^T P_k (A+B K_{k+1}) \end{split}$$

- $ightarrow \, K_k
 ightarrow K^{\star}$, steady-state (average cost) optimal gain: $\mu^{\star}(x) = K^{\star} x$
- \blacktriangleright $(1/2) x^T P_k x
 ightarrow V^{
 m rel}(x)$ with reference state x'=0
- ▶ $(1/2)\operatorname{\mathbf{Tr}}(P_k W) o J^{\star}$, optimal average stage cost

Linear quadratic regulator

Outline

Continuous state Markov decision process

Affine and quadratic functions

Linear quadratic Markov decision process

Linear quadratic regulator

Linear quadratic trading

Linear quadratic trading: Dynamics

$$\blacktriangleright \ x_{t+1} = f_t(x_t, u_t, \rho_t) = \operatorname{diag}(\rho_t)(x_t + u_t)$$

- $x_t \in \mathbf{R}^n$ is dollar amount of holding in n assets
- $(x_t)_i < 0$ means short position in asset i in period t
- ▶ $u_t \in \mathsf{R}^n$ is dollar amount of each asset bought at beginning of period t
- $(u_t)_i < 0$ means asset i is sold in period t
- $x_t^+ = x_t + u_t$ is post-trade portfolio
- $ho_t \in {\sf R}^n_{++}$ is (random) return of assets over period (t,t+1]
- ▶ returns independent, with $\mathbf{E} \ \rho_t = \overline{\rho}_t$, $\mathbf{E} \ \rho_t \rho_t^T = \Sigma_t$

Linear quadratic trading: Stage cost

stage cost for $t = 0, \ldots, T - 1$ is (convex quadratic)

$$g_t(x,u) = 1^{\, T} u + (1/2) (\kappa_t^{\, T} u^2 + \gamma(x+u)^{\, T} \, Q_t(x+u))$$

with $Q_t > 0$

- first term is gross cash in
- second term is quadratic transaction cost (square is elementwise; $\kappa_t > 0$)
- ▶ third term is risk (variance of post-trade portfolio for $Q_t = \Sigma_t \overline{\rho}_t \overline{\rho}_t^T$)
- $\gamma > 0$ is risk aversion parameter
- minimizing total stage cost equivalent to maximizing (risk-penalized) net cash taken from portfolio

Linear quadratic trading: Terminal cost

- ▶ terminal cost: $g_T(x) = -\mathbf{1}^T x + (1/2)\kappa_T^T x^2$, $\kappa_T > 0$
- this is net cash in if we close out (liquidate) final positions, with quadratic transaction cost

Linear quadratic trading: DP

value functions quadratic (including linear and constant terms):

$$V_t(x) = (1/2)(x^T P_t x + 2 q_t^T x + r_t)$$

▶ we'll need formula

$$\mathbf{E}(\operatorname{diag}(
ho_t)P\operatorname{diag}(
ho_t))=P\circ\Sigma_t$$

where \circ is Hadamard (element-wise) product

optimal expected tail cost

$$egin{aligned} & \mathrm{E} \; V_{t+1}(f_t(x,\, u,\,
ho_t)) = \mathrm{E} \; V_{t+1}(\mathrm{diag}(
ho_t)x^+) \ & = (1/2)((x^+)^T P_{t+1}\circ \Sigma_t x^+ + 2\, q_{t+1}^T \, \mathrm{diag}(ar
ho_t)x^+ + r_{t+1}) \end{aligned}$$

Linear quadratic trading: DP

▶
$$P_T = \operatorname{diag}(\kappa_T), q_T = -1, r_T = 0$$
▶ recall $V_t(x) = \min_u \mathbf{E} \left(g_t(x, u) + V_{t+1}(\operatorname{diag}(\rho_t)(x+u)) \right)$
▶ for $t = T - 1, \ldots, 0$ we minimize over u to get optimal policy:
$$\mu_t(x) = \operatorname{argmin}_u \left(u^T (S_{t+1} + \operatorname{diag}(\kappa_t)) u + 2(S_{t+1}x + s_{t+1} + 1)^T u \right)$$

$$= -(S_{t+1} + \operatorname{diag}(\kappa_t))^{-1}(S_{t+1}x + s_{t+1} + 1)$$

$$= K_t x + l_t$$

where

$$S_{t+1} = P_{t+1} \circ \Sigma_t + \gamma Q_t, \qquad s_{t+1} = \overline{
ho}_t \circ q_{t+1}$$

• using $u = K_t x + l_t$ we then have

$$V_t(x) = (1/2) \left[egin{array}{c} x \ 1 \end{array}
ight]^T \left[egin{array}{c} S_{t+1}(I+K_t) & s_{t+1}+S_{t+1}l_t \ s_{t+1}+l_t^TS_{t+1} & r_{t+1}+(s_{t+1}+1)^Tl_t \end{array}
ight] \left[egin{array}{c} x \ 1 \end{array}
ight]$$

Linear quadratic trading: Value iteration

▶ set P_T = diag(
$$\kappa_T$$
), $q_T = -1$, $r_T = 0$
▶ for $t = T - 1, ..., 0$
K_t = $-(S_{t+1} + \text{diag}(\kappa_t))^{-1}S_{t+1}$
 $l_t = -(S_{t+1} + \text{diag}(\kappa_t))^{-1}(s_{t+1} + 1)$
P_t = $S_{t+1}(I + K_t)$
 $q_t = s_{t+1} + S_{t+1}l_t$
 $r_t = r_{t+1} + (s_{t+1} + 1)^T l_t$

where

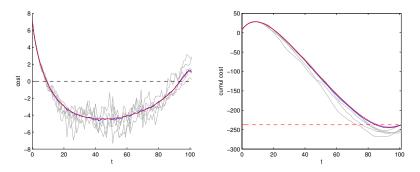
$$S_{t+1} = P_{t+1} \circ \Sigma_t + \gamma Q_t, \qquad s_{t+1} = \overline{
ho}_t \circ q_{t+1}$$

Linear quadratic trading: Numerical instance

- n = 30 assets over T = 100 time-steps
- initial portfolio $x_0 = 0$
- $\overline{\rho}_t = \overline{\rho}, \ \Sigma_t = \Sigma \text{ for } t = 0, \dots, \ T 1$
- $Q_t = \Sigma \overline{\rho} \overline{\rho}^T$ for $t = 0, \dots, T-1$
- \blacktriangleright asset returns log-normal, expected returns range over $\pm 3\%$ per period
- ▶ asset return standard deviations range from 0.4% to 9.8%
- ▶ asset correlations range from -0.3 to 0.8

Linear quadratic trading: Numerical instance

- ran N = 100 Monte Carlo simulations
- $J^{\star} = V_0(x_0) = -237.5$ (Monte Carlo estimate: -238.4)
- *left*: stage cost; *right*: cumulative stage cost
- ▶ exact (red), MC estimate (blue), and samples (gray); J^{*} red dashed



Linear quadratic trading: Numerical instance

we define $x_{T+1} = 0$, *i.e.*, we close out the position during period T

