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Continuous state Markov decision problem

I dynamics: xt+1 = ft (xt ;ut ;wt )

I x0;w0;w1; : : : independent

I stage cost: gt (xt ;ut ;wt )

I (state feedback) policy: ut = �t (xt )

I choose policy to minimize

J = E

 
T�1X
t=0

gt (xt ;ut ;wt ) + gT (xT )

!

I we consider the case X = Rn , U = Rm
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Continuous state Markov decision problem

I many (mostly mathematical) pathologies can occur in this case

I but not in the special case we'll consider

I a basic issue: how do you even represent the functions ft , gt , and �t?

I for n and m very small (say, 2 or 3) we can use gridding

I we can give the coe�cients in some (dense) basis of functions

I most generally, we assume we have a method to compute function values,
given the arguments

I exponential growth that occurs in gridding is called curse of dimensionality
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Continuous state Markov decision problem: Dynamic programming

I set VT (x ) = gT (x )

I for t = T � 1; : : : ; 0,

�t (x ) 2 argminu E (gt (x ;u ;wt ) +Vt+1(ft (x ;u ;wt )))

Vt (x ) = E (gt (x ; �t (x );wt ) +Vt+1(ft (x ; �t (x );wt )))

I this gives value functions and optimal policy, in principle only

I but you can't in general represent, much less compute, Vt or �t
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Continuous state Markov decision problem: Dynamic programming

for DP to be tractable, ft and gt need to have special form for which we can

I represent Vt , �t in some tractable way

I carry out expectation and minimization in DP recursion

one of the few situations where this holds: linear quadratic problems

I ft is an a�ne function of xt , ut (`linear dynamical system')

I gt are convex quadratic functions of xt , ut
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Linear quadratic problems

for linear quadratic problems

I value functions V ?

t are quadratic

I hence representable by their coe�cients

I we can carry out the expectation and the minimization in DP recursion

explicitly using linear algebra

I optimal policy functions are a�ne: �?t (x ) = Ktx + lt

I we can compute the coe�cients Kt and lt explicitly

in other words:

we can solve linear quadratic stochastic control problems in practice
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A�ne functions

I f : Rp ! Rq is a�ne if it has the form

f (x ) = Ax + b

i.e., it is a linear function plus a constant

I a linear function is special case, with b = 0

I a�ne functions closed under sum, scalar multiplication, composition

(with explicit formulas for coe�cients in each case)
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Quadratic function

I f : Rn ! R is quadratic if it has the form

f (x ) = (1=2)xTPx + q
T
x + (1=2)r

with P = PT 2 Rn�n (the 1=2 on r is for convenience)

I often write as quadratic form in (x ; 1):

f (x ) = (1=2)

�
x

1

�T �
P q

qT r

��
x

1

�

I special cases:

I quadratic form: q = 0, r = 0

I a�ne (linear) function: P = 0 (P = 0, r = 0)

I constant: P = 0, q = 0

I uniqueness: f (x ) = ~f (x ) () P = ~P ; q = ~q ; r = ~r
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Calculus of quadratic functions

I quadratic functions on Rn form a vector space of dimension

n(n + 1)

2
+ n + 1

I i.e., they are closed under addition, scalar multiplication
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Composition of quadratic and a�ne functions

I suppose

I f (z ) = (1=2)zTPz + qT z + (1=2)r is quadratic function on Rm

I g(x ) = Ax + b is a�ne function from R
n into Rm

I then composition h(x ) = (f � g)(x ) = f (Ax + b) is quadratic

I write h(x ) as

(1=2)

�
x

1

�T  �
A b

0 1

�T �
P q

qT r

��
A b

0 1

�!�
x

1

�

I so matrix multiplication gives us the coe�cient matrix of h
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Convexity and nonnegativity of a quadratic function

I f is convex (graph does not curve down) if and only if P � 0 (matrix

inequality)

I f is strictly convex (graph curves up) if and only if P > 0 (matrix

inequality)

I f is nonnegative (i.e., f (x ) � 0 for all x ) if and only if�
P q

qT r

�
� 0

I f (x ) > 0 if and only if matrix inequality is strict

I nonnegative ) convex
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Checking convexity and nonnegativity

I we can check convexity or nonnegativity in O(n3) operations by

eigenvalue decomposition, Cholesky factorization, . . .

I composition with a�ne function preserves convexity, nonnegativity:

f convex; g a�ne =) f � g convex

I linear combination of convex quadratics, with nonnegative coe�cients, is

convex quadratic

I if f (x ;w) is convex quadratic in x for each w (a random variable) then

g(x ) = E
w
f (x ;w)

is convex quadratic (i.e., convex quadratics closed under expectation)

A�ne and quadratic functions 14



Minimizing a quadratic

I if f is not convex, then minx f (x ) = �1

I otherwise, x minimizes f if and only if rf (x ) = Px + q = 0

I for q 62 range(P), minx f (x ) = �1

I for P > 0, unique minimizer is x = �P�1q

I minimum value is

min
x
f (x ) = �(1=2)qTP�1

q + (1=2)r

(a concave quadratic function of q)

I for case P � 0, q 2 range(P), replace P�1 with Py
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Partial minimization of a quadratic

I suppose f is a quadratic function of (x ;u), convex in u

I then the partial minimization function

g(x ) = min
u

f (x ;u)

is a quadratic function of x ; if f is convex, so is g

I the minimizer argminu f (x ;u) is an a�ne function of x

I minimizing a convex quadratic function over some variables yields a

convex quadratic function of the remaining ones

I i.e., convex quadratics closed under partial minimization
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Partial minimization of a quadratic

I let's take

f (x ;u) = (1=2)

2
4 x

u

1

3
5
T 2
4 Pxx Pxu qx

Pux Puu qu

qTx qTu r

3
5
2
4 x

u

1

3
5

with Puu > 0, Pux = PT
xu

I minimizer of f over u satis�es

0 = ru f (x ;u) = Puuu + Puxx + qu

so u = �P�1
uu (Puxx + qu) is an a�ne function of x
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Partial minimization of a quadratic

I substituting u into expression for f gives

g(x ) = (1=2)

�
x

1

�T �
Pxx � PxuP

�1
uu Pux qx � PxuP

�1
uu qu

qTx � qTu P
�1
uu Pux r � quP

�1
uu qu

��
x

1

�

I Pxx � PxuP
�1
uu Pux is the Schur complement of P w.r.t. u

I Pxx � PxuP
�1
uu Pux � 0 if P � 0

I or simpler: g is composition of f with a�ne function x 7! (x ;u)�
x

u

�
=

�
I

�P�1
uu Pux

�
x +

�
0

�P�1
uu qu

�

I we already know how to form composition quadratic (a�ne)

I and the result is convex
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Summary

convex quadratics are closed under

I addition

I expectation

I pre-composition with an a�ne function

I partial minimization

in each case, we can explicitly compute the coe�cients of the result using

linear algebra
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(Random) linear dynamical system

I dynamics xt+1 = ft (xt ;ut ;wt ) = At (wt )xt + Bt (wt )ut + ct (wt )

I for each wt , ft is a�ne in (xt ;ut )

I x0;w0;w1; : : : are independent

I At (wt ) 2 Rn�n is dynamics matrix

I Bt (wt ) 2 Rn�m is input matrix

I ct (wt ) 2 Rn is o�set
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Linear quadratic stochastic control problem

I stage cost gt (xt ;ut ;wt ) is convex quadratic in (xt ;ut ) for each wt

I choose policy ut = �t (xt ) to minimize objective

J = E

 
T�1X
t=0

gt (xt ;ut ;wt ) + gT (xT )

!
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Dynamic programming

I set VT (x ) = gT (x )

I for t = T � 1; : : : ; 0,

�t (x ) 2 argminu E (gt (x ;u ;wt ) +Vt+1(ft (x ;u ;wt )))

Vt (x ) = E (gt (x ; �t (x );wt ) +Vt+1(ft (x ; �t (x );wt )))

I all Vt are convex quadratic, and all �t are a�ne

I this gives value functions and optimal policy, explicitly
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Dynamic programming

we show Vt are convex quadratic by (backward) induction

I suppose VT ; : : : ;Vt+1 are convex quadratic

I since ft is a�ne in (x ;u), Vt+1(ft (x ;u ;wt )) is convex quadratic

I so gt (x ;u ;wt ) +Vt+1(ft (x ;u ;wt )) is convex quadratic

I and so is its expectation over wt

I partial minimization over u leaves convex quadratic of x , which is Vt (x )

I argmin is a�ne function of x , so optimal policy is a�ne
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Linear equality constraints

I can add (deterministic) linear equality constraints on xt ;ut into gt , gT :

gt (x ;u ;w) = g
quad
t (x ;u ;w) +

�
0 Ftx +Gtu = ht

1 otherwise

I everything still works:

I Vt is convex quadratic, possibly with equality constraints

I �t is a�ne

I reason: minimizing a convex quadratic over some variables, subject to

equality constraints, yields a convex quadratic in remaining variables
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In�nite horizon linear quadratic problems

I consider average stage cost problems (others are similar)

with time-invariant dynamics and stage costs

I same as for �nite state case: use value iteration

I set V0(x ) = 0; for k = 0; 1; : : :,

�k+1(x ) = argminu E (g(x ;u ;wt ) +Vk (f (x ;u ;wt )))

Vk+1(x ) = E (g(x ; �k+1(x );wt ) +Vk (f (x ; �k+1(x );wt )))

I can be carried out concretely, since Vk is quadratic, �k is a�ne
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Optimal steady-state policy

I �k ! �? (ITAP), a.k.a. steady-state policy �?(x ) = K ?x + l?

I K ? (l?) called (steady-state, average cost) optimal gain matrix (o�set)

I Vk (x )�Vk (x
0)! V rel(x ), relative value function (ITAP)

I x 0 is (arbitrary) reference state

I V rel de�ned only up to a constant

I Vk+1(x )�Vk (x )! J ?, the optimal average cost, for any x

Linear quadratic Markov decision process 27



Outline

Continuous state Markov decision process

A�ne and quadratic functions

Linear quadratic Markov decision process

Linear quadratic regulator

Linear quadratic trading

Linear quadratic regulator 28



Linear quadratic regulator

I xt+1 = Atxt + Btut + wt

I Ewt = 0, Ewtw
T
t =Wt

I stage cost is (convex quadratic)

(1=2)(xTt Qtxt + u
T
t Rtut )

with Qt � 0, Rt > 0

I terminal cost (1=2)xTT QTxT , QT � 0

I variation: terminal constraint xT = 0
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Linear quadratic regulator: DP

I value functions are quadratic plus constant (linear terms are zero):

Vt (x ) = (1=2)(xTPtx + rt )

I PT = QT , rT = 0

I optimal expected tail cost:

EVt+1(ft (x ;u ;wt ))

= (1=2)(rt+1 +E(Atx + Btu + wt )
TPt+1(Atx + Btu + wt ))

= (1=2)(rt+1 + (Atx + Btu)
TPt+1(Atx + Btu) +Tr(Pt+1Wt ))

using Ewt = 0 and

Ew
T
t Pt+1wt = ETr(Pt+1wtw

T
t ) = Tr(Pt+1Wt )
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Linear quadratic regulator: DP

I minimize over u to get optimal policy:

�t (x ) = argmin
u

�
u
T
Rtu + u

T
B

T
t Pt+1Btu + 2(BT

t Pt+1Atx )
T
u
�

= �
�
Rt + B

T
t Pt+1Bt

��1
B

T
t Pt+1Atx

= Ktx

I optimal policy is linear (as opposed to a�ne)

I using u = Ktx we then have

Vt (x ) = (1=2)(rt+1 +Tr(Pt+1Wt ) + xT (Qt +KT
t RtKt )x+

xT (At + BtKt )
TPt+1(At + BtKt )x )

I so coe�cients of Vt are

Pt = Qt +KT
t RtKt + (At + BtKt )

TPt+1(At + BtKt );

rt = rt+1 +Tr(Pt+1Wt )
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Linear quadratic regulator: Riccati recursion

I set PT = QT

I for t = T � 1; : : : ; 0

Kt = �(Rt + B
T
t Pt+1Bt )

�1
B

T
t Pt+1At

Pt = Qt +K
T
t RtKt + (At + BtKt )

T
Pt+1(At + BtKt )

I called Riccati recursion; gives optimal policies, which are linear functions

I surprise: optimal policy does not depend on the disturbance distribution

(provided it is zero mean)

I J ? = (1=2)(Tr(P0X0) +
PT�1

t=0
Tr(Pt+1Wt )), where X0 = E(x0x

T
0 )
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Linear quadratic regulator: Example

I n = 5 states, m = 2 inputs, horizon T = 31

I A;B chosen randomly; A scaled so maxi j�i (A)j = 1

I Qt = I , Rt = I , t = 0; : : : ;T � 1, QT = 5I

I x0 � N (0;X0), X0 = I

I wt � N (0;W ), W = 0:1I
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Linear quadratic regulator: Example

left: (Kt )11, (Kt )21 vs. t ; right: E Jt vs. t
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Linear quadratic regulator: Sample trajectory
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Linear quadratic regulator: Cost comparison

compare cost for

I optimal policy, J ?

I prescient policy, Jpre: w0 : : : ;wT known in advance

I open loop policy, J ol: choose u0; : : : ;uT with knowledge of x0 only

I no control (1-step greedy), Jnc: u0; : : : ;uT = 0
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Linear quadratic regulator: Cost comparison

total stage cost histograms, N = 5000 Monte Carlo simulations
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Steady-state linear quadratic regulator

I average cost case, all data time-invariant

I use Riccati recursion to �nd steady-state (average cost) optimal policy:

Kk+1 = �(R + B
T
PkB)

�1
B

T
PkA

Pk+1 = Q +K
T
k+1RKk+1 + (A+ BKk+1)

T
Pk (A+ BKk+1)

I Kk ! K ?, steady-state (average cost) optimal gain: �?(x ) = K ?x

I (1=2)xTPkx ! V rel(x ) with reference state x 0 = 0

I (1=2)Tr(PkW )! J ?, optimal average stage cost
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Linear quadratic trading: Dynamics

I xt+1 = ft (xt ;ut ; �t ) = diag(�t )(xt + ut )

I xt 2 Rn is dollar amount of holding in n assets

I (xt )i < 0 means short position in asset i in period t

I ut 2 Rn is dollar amount of each asset bought at beginning of period t

I (ut )i < 0 means asset i is sold in period t

I x
+

t = xt + ut is post-trade portfolio

I �t 2 Rn
++ is (random) return of assets over period (t ; t + 1]

I returns independent, with E �t = �t , E �t�
T
t = �t
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Linear quadratic trading: Stage cost

stage cost for t = 0; : : : ;T � 1 is (convex quadratic)

gt (x ;u) = 1
T
u + (1=2)(�Tt u

2 + (x + u)TQt (x + u))

with Qt > 0

I �rst term is gross cash in

I second term is quadratic transaction cost (square is elementwise; �t > 0)

I third term is risk (variance of post-trade portfolio for Qt = �t � �t�
T
t )

I  > 0 is risk aversion parameter

I minimizing total stage cost equivalent to maximizing (risk-penalized) net

cash taken from portfolio
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Linear quadratic trading: Terminal cost

I terminal cost: gT (x ) = �1
Tx + (1=2)�TTx

2, �T > 0

I this is net cash in if we close out (liquidate) �nal positions, with

quadratic transaction cost
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Linear quadratic trading: DP

I value functions quadratic (including linear and constant terms):

Vt (x ) = (1=2)(xTPtx + 2q
T
t x + rt )

I we'll need formula

E(diag(�t )P diag(�t )) = P � �t

where � is Hadamard (element-wise) product

I optimal expected tail cost

EVt+1(ft (x ;u ; �t )) = EVt+1(diag(�t )x
+)

= (1=2)((x+)TPt+1 � �tx
+ + 2qTt+1 diag(�t )x

+ + rt+1)
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Linear quadratic trading: DP

I PT = diag(�T ), qT = �1, rT = 0

I recall Vt (x ) = minu E (gt (x ;u) +Vt+1(diag(�t )(x + u)))

I for t = T � 1; : : : ; 0 we minimize over u to get optimal policy:

�t (x ) = argminu
�
uT (St+1 + diag(�t ))u + 2(St+1x + st+1 + 1)Tu

�
= �(St+1 + diag(�t ))

�1(St+1x + st+1 + 1)

= Ktx + lt

where

St+1 = Pt+1 � �t + Qt ; st+1 = �t � qt+1

I using u = Ktx + lt we then have

Vt (x ) = (1=2)

�
x

1

�T �
St+1(I +Kt ) st+1 + St+1lt

sTt+1 + lTt St+1 rt+1 + (st+1 + 1)T lt

��
x

1

�
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Linear quadratic trading: Value iteration

I set PT = diag(�T ), qT = �1, rT = 0

I for t = T � 1; : : : ; 0

Kt = �(St+1 + diag(�t ))
�1St+1

lt = �(St+1 + diag(�t ))
�1(st+1 + 1)

Pt = St+1(I +Kt )

qt = st+1 + St+1lt

rt = rt+1 + (st+1 + 1)T lt

where

St+1 = Pt+1 � �t + Qt ; st+1 = �t � qt+1

I optimal policy: �?t (x ) = Ktx + lt

I can write as �?t (x ) = Kt (x � x tart ), x tart = �K�1
t lt = �S

�1
t+1(st+1 + 1)

I J ? = EV0(x0)
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Linear quadratic trading: Numerical instance

I n = 30 assets over T = 100 time-steps

I initial portfolio x0 = 0

I �t = �, �t = � for t = 0; : : : ;T � 1

I Qt = �� ��T for t = 0; : : : ;T � 1

I asset returns log-normal, expected returns range over �3% per period

I asset return standard deviations range from 0:4% to 9:8%

I asset correlations range from �0:3 to 0:8
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Linear quadratic trading: Numerical instance

I ran N = 100 Monte Carlo simulations

I J ? = V0(x0) = �237:5 (Monte Carlo estimate: �238:4)

I left: stage cost; right: cumulative stage cost

I exact (red), MC estimate (blue), and samples (gray); J ? red dashed
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Linear quadratic trading: Numerical instance

we de�ne xT+1 = 0, i.e., we close out the position during period T
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