
EE365: Markov Decision Problems

Markov decision process

Markov decision problem

Examples

1



Outline

Markov decision process

Markov decision problem

Examples

Markov decision process 2



Markov decision process

I add input (or action or control) to Markov chain with costs

I input selects from a set of possible transition probabilities

I input is function of state (in standard information pattern)
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De�nition: Dynamical system form

xt+1 = ft (xt ;ut ;wt ); t = 0; 1; : : : ;T � 1

I state xt 2 X

I action or input ut 2 U

I uncertainty or disturbance wt 2 W

I dynamics functions ft : X � U �W ! X

I x0;w0; : : : ;wT�1 are independent RVs

I variation (state dependent input space): ut 2 Ut (xt ) � U

(Ut (xt ) is set of allowed actions in state xt at time t)
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Policy

I action is function of state:

ut = �t (xt ); t = 0; : : : ;T � 1

I �t : X ! U is state feedback function at time t

I � = (�0; : : : ; �T�1) is the policy (or control law)

I number of possible policies: jUjjX jT

I very large for any case of interest

I for each t = 0; : : : ;T � 1, for each x 2 X , we can choose �t (x ) 2 U
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Closed-loop system

I with policy, (`closed-loop') dynamics is

xt+1 = Ft (xt ;wt ) = ft (xt ; �t (xt );wt ); t = 0; 1; : : : ;T � 1

I Ft are closed-loop state transition functions

I x0; : : : ; xT is Markov
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Information patterns

I ut = �t (xt ) is standard information pattern

I action is function of current state

I also called state feedback control

I some nonstandard information patterns:

I full information (or prescient): ut = �t (x0;w0; : : : ;wT�1)

I no information: ut = �t () (i.e., u0; : : : ; uT�1 are �xed)

I initial state (also called open-loop): ut = �t (x0)

I state and disturbance: ut = �t (xt ;wt )
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Cost function

I total cost is

J = E

 
T�1X
t=0

gt (xt ;ut ;wt ) + gT (xT )

!

I stage cost functions gt : X � U �W ! R

I terminal cost function gT : X ! R

I variation: allow gt to take on value +1 to encode constraints on

state-action pairs (�1 for rewards, when we maximize)

I we sometimes write J� to show dependence of cost on policy
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Closed-loop stage cost functions

I closed-loop stage cost functions:

Gt (x ) = E
wt

gt (x ; �t (x );wt ); t = 0; : : : ;T � 1

(note that xt ?? wt )

I closed-loop terminal cost function:

GT (x ) = gT (x )
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Cost function: Special cases

I deterministic cost: gt do not depend on wt

I time-invariant: g0; : : : ; gT are the same

I terminal cost only: g0 = � � � = gT�1 = 0

I state-control separable (deterministic case):

gt (xt ;ut ;wt ) = qt (xt ) + rt (ut )

I qt : X ! R is state cost function

I rt : U ! R is action cost function
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Value iteration to compute cost

I we can use value iteration to compute J

I (deterministic cost for simplicity)

I take VT (x ) = gT (x ),

Vt (x ) = gt (x ; �t (x )) +EVt+1(ft (x ; �t (x );wt )); t = T � 1; : : : ; 0

(expectation is over wt )

I J = �0V0

I computation cost is T jX jjWj operations (fewer for sparse transitions)
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Concrete form

I X = f1; : : : ;ng, U = f1; : : : ;mg

I transition probabilities (time-invariant case) given by

Pijk = Prob(xt+1 = j j xt = i ; ut = k)

I Pijk is probability that next state is j , when current state is i and

control action k is taken

I P is 3-D array (often sparse)

I in state i , action chooses next state distribution from choices

Pi;:;k = [Pi1k � � �Pink ]; k = 1; : : : ;m

I for time-varying case, P is 4-D array (!!)
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Concrete form

I stage costs (time-invariant case) given by

Cijk ; i ; j = 1; : : : ;n ; k = 1; : : : ;m

I Cijk is cost when state i transitions to state j with action k

I C is 3-D array (often sparse); can assume that Cijk = 0 when Pijk = 0

I state-action separable case: Cijk = qi + rk
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Markov decision process

I Markov decision process (MDP) de�ned by

I (action dependent) state transition functions f0; : : : ; fT�1

I distributions of x0;w0 : : : ;wT�1

I stage cost functions g0; : : : ; gT�1

I terminal cost function gT

I policy de�ned by state feedback functions �0; : : : ; �T�1

I combining Markov decision problem with policy, we get closed-loop

Markov chain with costs
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Markov decision problem

I given Markov decision process, cost with policy � is J�

I Markov decision problem: �nd a policy �
? that minimizes J�

I number of possible policies: jUjjX jT (very large for any case of interest)

I there can be multiple optimal policies

I we will see how to �nd an optimal policy next lecture

Markov decision problem 16



Outline

Markov decision process

Markov decision problem

Examples

Examples 17



Trading

simple trading model for one asset:

I hold (integer) number of shares qt 2 [Qmin
;Qmax] in period t

I buy ut shares at time t , ut 2 [Qmin � qt ;Q
max � qt ], so

qt+1 = qt + ut

I price pt 2 fP1; : : : ;Pkg is Markov; pt known before ut is chosen

I revenue is �utpt �T (ut )� S((qt )�)

I T (ut ) � 0 is transaction cost

I S((qt )�) � 0 is shorting cost

I q0 = 0; we require qT = 0

I maximize total expected revenue over t = 0; : : : ;T � 1
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Trading

MDP model:

I state is xt = (qt ; pt )

I stage cost is negative revenue

I terminal cost is gT (0) = 0; gT (q) =1 for q 6= 0

I (trading) policy gives number of assets to buy (sell) as function of time

t , current holdings qt , and price pt

I presumably, good policy buys when pt is low and sells when pt is high
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Variations

how do we handle (model) the following, and what assumptions would we

need to make?

I price movements that depend on ut (price impact)

I imperfect ful�llment (i.e., you might not buy or sell the full amount ut )

I price movements that depend on a `signal' st 2 fS1; : : : ;Srg that you

know at time t
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