EE365: Markov Decision Problems
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Markov decision process

» add input (or action or control) to Markov chain with costs
> input selects from a set of possible transition probabilities

» input is function of state (in standard information pattern)
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Definition: Dynamical system form

Ti41 =ft(zt,ut,wt), tZO,l,...,T—l

> state z; € X

» action or input us € U

» uncertainty or disturbance w; € W

» dynamics functions f; : X XU X W — X

> o, Wo, ..., wr—1 are independent RVs

» variation (state dependent input space): us € Us(z:) C U
(U () is set of allowed actions in state z; at time t)
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Policy

» action is function of state:
ut:/.Lt((Et), t:O,...,T—l
> u:: X — U is state feedback function at time ¢

» u = (to,...,pur—1) is the policy (or control law)

» number of possible policies: [U/|!*!T
> very large for any case of interest

> foreach t =0,...,T — 1, for each ¢ € X, we can choose pu¢(z) € U
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Closed-loop system

» with policy, (‘closed-loop’) dynamics is
Te1 = Fe(ae, we) = feze, pe(ae), we),
» F; are closed-loop state transition functions

> zo,...,2r is Markov
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Information patterns

» us = pe(az:) is standard information pattern
» action is function of current state
> also called state feedback control
» some nonstandard information patterns:
» full information (or prescient): us = p¢(@o, wo, ..., wr—1)
> no information: u¢ = wt() (i.e., uo,...,ur—_1 are fixed)
> initial state (also called open-loop): us = pe(@o0)

> state and disturbance: us = pe¢(xe, we)
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Cost function

> total cost is
71

J=E Y gl u,w)+ gr(ar)

t=0
> stage cost functions g: : X xU x W — R

» terminal cost function g7 : X - R

» variation: allow g: to take on value +oc0 to encode constraints on
state-action pairs (—oo for rewards, when we maximize)

» we sometimes write J* to show dependence of cost on policy
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Closed-loop stage cost functions

» closed-loop stage cost functions:

Gt(I) :Egt(m,#t(z),wt), t=0,...

(note that z¢ 1L w)

» closed-loop terminal cost function:

Gr(z) = gr(e)
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Cost function: Special cases

» deterministic cost: g: do not depend on w;
» time-invariant: go,..., gr are the same

» terminal cost only: go=---=gr_-1 =0

> state-control separable (deterministic case):

gt (e, u, we) = qe(ze) + 7re(ur)

» gt : X — R is state cost function

» 7t : U — R is action cost function
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Value iteration to compute cost

> we can use value iteration to compute J
> (deterministic cost for simplicity)
> take Vr(z) = gr(z),
Vi(z) = gi(z, pe(2)) + E Ve (fiz, pe(z), wr)), t=T-1,...,0
(expectation is over wy)
» J=m Vo

» computation cost is T'|X||W)| operations (fewer for sparse transitions)
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Concrete form

» X =A{1,...,n}, U={1,...,m}
> transition probabilities (time-invariant case) given by

Pijk = PI‘Ob(Zt_(_l :_] | Ty = ‘I;, Ut = k)

v

Pjji, is probability that next state is 7, when current state is z and
control action k is taken

v

P is 3-D array (often sparse)
» in state 7, action chooses next state distribution from choices
Pi.x =[Piix -+ Pim], k=1

yorey M

v

for time-varying case, P is 4-D array (!I)
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Concrete form

» stage costs (time-invariant case) given by
Cik, t,7=1,...,
» Cip is cost when state ¢ transitions to state j with action &

» C is 3-D array (often sparse); can assume that Cix = 0 when Py, =0

> state-action separable case: Cyr = ¢; + %
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Markov decision process

» Markov decision process (MDP) defined by

> (action dependent) state transition functions fo,...,fr—1
» distributions of o, wo ..., wr—1
> stage cost functions go,..., 971

> terminal cost function gr

» policy defined by state feedback functions po, ..., pr—1

» combining Markov decision problem with policy, we get closed-loop
Markov chain with costs
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Markov decision problem

v

given Markov decision process, cost with policy p is J#

v

Markov decision problem: find a policy p* that minimizes J#

v

number of possible policies: [U|!¥!7 (very large for any case of interest)
> there can be multiple optimal policies

» we will see how to find an optimal policy next lecture
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Trading

simple trading model for one asset:

| 4

>

hold (integer) number of shares g; € [@™", Q™*] in period ¢
buy u; shares at time ¢, u¢ € [Q™® — g, Q™™ — g], s0
Gt+1 = gt + Ut

price pt € {Px1,..., Px} is Markov; p: known before u; is chosen
revenue is —uspr — T'(ue) — S((g¢)-)

» T(ut) > 0 is transaction cost

> S((qt)-) > 0 is shorting cost
go = 0; we require gr =0

maximize total expected revenue over t =0,..., T —1
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Trading

MDP model:

> state is zx = (g¢, pt)

» stage cost is negative revenue

» terminal cost is g7(0) = 0; gr(g) = oo for ¢ # 0

» (trading) policy gives number of assets to buy (sell) as function of time
t, current holdings g¢, and price p;

» presumably, good policy buys when p; is low and sells when p; is high
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Variations

how do we handle (model) the following, and what assumptions would we
need to make?

> price movements that depend on wu; (price impact)
» imperfect fulfillment (i.e., you might not buy or sell the full amount ;)

> price movements that depend on a 'signal’ s; € {S1,..., S,} that you
know at time ¢
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