EE365: Model Predictive Control
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Stochastic control

» dynamics zz+1 = fe(@e, ue, we), t =0,..., T —1
>ieX, uel, v eW

> 2o, Wo, ..., wr—1 independent

> stage cost g:(z¢, u¢); terminal cost gr(zr)

» state feedback policy us = pt(z¢), t =0,..., T —1

» stochastic control problem: choose policy to minimize

J=E (Z ge(ze, ut) + gT(ZT)>

t=0
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Stochastic control

» can solve stochastic control problem in some cases
> X, U, W finite (and as a practical matter, not too big)
> X, U, W finite dimensional vector spaces, f; affine, g: convex quadratic

> and a few other special cases

» in other situations, must resort to heuristics, suboptimal policies
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Certainty-equivalent control

v

a simple (usually) suboptimal policy
» replace each w; with some predicted, likely, or typical value w;

» stochastic control problem reduces to deterministic control problem,
called certainty-equivalent problem

» certainty-equivalent policy is optimal policy for certainty-equivalent
problem

» useful when we can't solve stochastic problem, but we can solve
deterministic problem

» sounds unsophisticated, but can work very well in some cases

> also called model predictive control (MPC) (for reasons we’'ll see later)
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Where w; comes from

v

most likely value: choose w: as value of w; with maximum probability
» a random sample of w; (yes, really)

» a nominal value

v

a prediction of w; (more on this later)

» when w; is a number or vector: W; = E w¢, rounded to be in U
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Optimal versus CE policy via dynamic programming

» optimal policy: Vj(z) = gr(z);fort=T-1,...,0,
Vi(z) = min(g(e v) +E Via(fi(e, u, w)))
wi(z) € argmin(g(z,v) + B Vi (flz, v, w))
» CE policy: V7°(z) = gr(z);fort=T-1,...,0,
V) = min(a(s,v)+ VL (e, v, @)))

pit(z) € argmin(gi(z, v) + ViE(Fi(z, u, @r)))
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Computing CE policy via optimization

» CE policy 1 is typically not computed via DP
(if you could do this, why not use DP to compute optimal policy?)

> instead we evaluate ui*(z) by solving a deterministic control
(optimization) problem

minimize Ef;tl 9r(zr, ur) + gr(27)

subject to  zr+1 = fr(zr, s, W-), T=1¢,...,T—1
Tt =T
with variables z, ..., zr, ut,..., ur_1
» find a solution Z,...,Zr,dt,..., 471

> then u{®(z) = 4 (and optimal value of problem above is V¢(z))

» we don't have a formula for uf® (or V£°) but we can compute ui®(z)
(V£e(z)) for any given z by solving an optimization problem
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Certainty-equivalent control

> need to solve a (deterministic) optimal control problem in each step,
with a given initial state

» these problems become shorter (smaller) as ¢ increases toward T

» call solution of optimization problem at time ¢

Tty TTlty  Utfty -, UT)t

> interpret as plan of future action at time ¢
(based on assumption that disturbances take values @, ..., wr_1)

> solving problem above is planning

v

CE control executes first step in plan of action

> once new state is determined, update plan
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Example: Multi-queue serving
» N queues with capacity C: state is ¢: € {0,..., C}¥
» observe random arrivals w; from some known distribution
> can serve up to S queues in each time period:
u € {0, 1}N, u < g, 17w, <8
> dynamics g:+1 = (gr — ue + wt)[o,C]
> stage cost

ge(a,u,w) =a’ ¢+ B¢+ (¢ — w +we — C)4

queue cost rejection cost

v

terminal cost g7 (gqr) = AT qr
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Example: Multi-queue serving

consider example with
» N =5 queues, C = 3 capacity, S = 2 servers, horizon T = 10
> |X| = 1024, [U| =16, [W| = 32

(4

» w,’ ~ Bernoulli(p;)

» (randomly chosen) parameters:
= (047, 017, 0.25, 0.21, 0.60

)
1.32, 0.11, 0.63, 141, 1.83)
0.98, 2.95, 0.16, 2.12, 2.59 )
)
)

0.95, 4.23, 7.12, 9.27, 0.82
0.57, 1.03, 0.24, 0.74, 2.11

> 2 ™ R
I
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Example: Multi-queue serving

» use deterministic values @ = (1,0,0,0,1), t=0,..., T —1
» other choices lead to similar results (more later)

» problem is small enough that we can solve it exactly (for comparison)

Certainty-equivalent control
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Example: Multi-queue serving

» 10000 Monte Carlo simulations with optimal and CE policies

» J* =5555, J° =57.04 (very nearly optimal!)

Optimal
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5001

0
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15001
1000+

5001

o

150
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Example: Multi-queue serving

> red indicates u°°(z) # p*(z); policies differ in 37.91% of entries

Certainty-equivalent control
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Example: Multi-queue serving

» with (reasonable) different assumed values, such as @ = (0,0,0,0, 1),
get different policies, also nearly optimal

» interpretation: CE policies work well because
» there are many good (nearly optimal) policies

» the CE policy takes into account the dynamics, stage costs

> there is no need to use CE policy when (as in this example) we can just
as well compute the optimal policy

Certainty-equivalent control
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Linear-quadratic regulator (LQR)

» X =R", U=R"
> w1 = Azt + But + w
> o, Wo, W, . .. independent zero mean, E zozg = Xo, Ewiw! = W

» cost (with @ >0, R: > 0)

T-1

J=(1/2) Z (a:tT Qi + utTRtut) + (1/2)1:77: Qrzr

t=0
> can solve exactly, since V¢ is quadratic, u} is linear

> can compute J* exactly

Constrained linear-quadratic regulator 17



CE for LQR

» use W = Ew; = 0 (i.e., neglect disturbance)

» for LQR, CE policy is actually optimal
> in LQR lecture we saw that optimal policy doesn’t depend on W
» choice W = 0 corresponds to deterministic problems in CE

» another hint that CE isn't as dumb as it might first appear

» when E w; # 0, CE policy is not optimal

Constrained linear-quadratic regulator
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Constrained LQR

» same as LQR, but replace Y = R™ with Y =[-1,1]™
» i.e., constrain control inputs to [—1, 1] (‘actuator limits')

» cannot practically compute (or even represent) V, uy

v

we don’t know optimal value J*

Constrained linear-quadratic regulator
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CE for constrained linear-quadratic regulator

» CE policy usually called MPC for constrained LQR
> use Wy =Ew; =0
» evaluate u§°(z) by solving (convex) quadratic program (QP)

minimize  (1/2) 227} (27 @rzr + uf Rrur) + (1/2)2f Qrar

subject to zr41 = Azr + Bu,, T7=1¢,...,T—1
z €RY, wu,€[-1,1" 7=t,...,T-1
Tt =T
with variables z, ..., zr, ut,..., ur—1
» find solution Z,...,Zr, Ut,..., 471

> execute first step in plan: u;""°(z) =

> these QPs can be solved super fast (e.g., in microseconds)

Constrained linear-quadratic regulator
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Example

consider example with
» n = 8 states, m = 2 inputs, horizon T' = 50
» A, B chosen randomly, A scaled so max; [A;(4)| =1
» X =3I, W =15I
» Q=1 R =1
» associated (unconstrained) LQR problem has
> ||ulleo > 1 often

» Jlar = 85 (a lower bound on J'* for constrained LQR problem)
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Example

> u$*P(z) = (K;¥z);_1,1) (‘saturated LQR control’)
> yields performance JUP = 1641.8

» MPC policy p;P°(z)
> vyields performance J™P°¢ = 1135.3

> we don't know J* (other than J* > J'% = 85)

» sophisticated lower bounding techniques can show J™P€ very near J*

Constrained linear-quadratic regulator
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Infinite horizon MPC

» want approximate policy for infinite horizon average (or total) cost
stochastic control problem

> replace w; with some typical value @ (usually constant)

» in most cases, cannot solve resulting infinite horizon deterministic
control problem

» instead, solve the deterministic problem over a rolling horizon (or
planning horizon) from current time t to t + T'

Infinite horizon model predictive control
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Infinite horizon MPC

> to evaluate u™P°(z), solve optimization problem

. t+T—1
minimize > 7" g(2r, ur) 4+ ¢°°" (s7)
subject to  zr+1 = f(zr, ur, W), T=¢,...,t+T—1
Tt =
with variables @, ..., 41, ut,. .., Ut 71
» find a solution Z,..., ey, Uty -, Ut T—1

> then u,"P°(xz¢) = ue
> g% is an end-of-horizon cost

> these optimization problems have the same size (cf. finite horizon MPC)

Infinite horizon model predictive control
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Infinite horizon MPC

» design parameters in MPC policy:
» disturbance predictions @ (typically constant)
> horizon length T
> end-of-horizon cost g
> some common choices: g*°*(z) = 0, g°°*(z) = min, g(z, u)
» performance of MPC policy evaluated by Monte Carlo simulation

» for T large enough, particular value of T and choice of g°°® shouldn’t
affect performance very much

Infinite horizon model predictive control
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Example: Supply chain management

» n nodes (warehouses/buffers)

» z: € R" is amount of commodity at nodes at time ¢

» m unidirectional links between nodes, external world

» u; € R™ is amount of commodity transported along links at time ¢

» incoming and outgoing note incidence matrix:

intout) _ 1 link j enters (exits) node ¢

v " )0 otherwise

(include wholesale supply links and retail delivery links)

> dynamics: z;11 = z; + AP u, — A"y,

Infinite horizon model predictive control

28



Example: Supply chain management

» buffer limits: 0 < z; < Tmax
> warehousing/storage cost: W (z;) = az + 7z2, o, >0
» link capacities: 0 < u¢ < Umax

> A°"*y < z; (can't ship out what's not on hand)

Infinite horizon model predictive control
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Example: Supply chain management

>

>

| 4

shipping/transportation cost: S(u¢) = S1((ue)1) + -+ + Sn((ut)m)
for internode link, Si((u¢)i) = v(we); is transportation cost
for wholesale supply link, Si((u:)i) = (p™®)i(ue)i is purchase cost

for retail delivery link, S;((u):) = —p™* min{(d:);, (u):} is the
negative retail revenue, where p™* is retail price and (d:); is the demand

we assume wholesale prices (p{®); are IID, demands (d;); are 11D
link flows u; chosen as function of z, p,‘g"h, ds

objective: minimize average stage cost

T

J = lim %Z(s(ut) + W(zt))

T—o0
t=0
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Example

» n = 4 nodes, m = 8 links

» links 1,2 are wholesale supply; links 7,8 are retail delivery

Uy L1 us €3 ur
Uep
Uy . us
KD Ty

Infinite horizon model predictive control
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Example

» buffer capacities Zmax = 3

» link flow capacities umax = 2

> storage cost parameters a = 8 = 0.01; v = 0.05

» wholesale prices are log-normal with means 1, 1.2; variances 0.1, 0.2
» demands are log-normal with means 1, 0.8; variances , 0.4, 0.2

> retail price is p™* =2

Infinite horizon model predictive control
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Example

» MPC parameters:

» future wholesale prices and retail demands assumed equal to their means
(current wholesale prices and demands are known)

> horizon T = 30

» end-of-horizon cost ¢g°°® = 0
» MPC problem is QP (and readily solved)
» results: average cost J = —1.69

» wholesale purchase cost 1.20

> retail delivery income —3.16

» lower bounding techniques for similar problems suggests MPC is very
nearly optimal
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MPC sample trajectory: supply

wholesale price

4

3

2

1
155 160 165 170 175 180 185 190 195 200

wholesale order

2

15

1

0.5

0
155 160 165 170 175 180 185 190 195 200

line: (pI"™)1, (P"™)2: bar: w1, s
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MPC sample trajectory: delivery

155 160 165 170 175 180 185 190 195 200
us
3
25F

155 160 165 170 175 180 185 190 195 200

t
solid: delivery; dashed: demand
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MPC sample trajectory

Uz

U2

Uus
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MPC sample

Z1, T4
o

0.5

Us

trajectory

storage
155 160 165 170 175 180 185 190 195 200

_ shipping
—H H [Tl F\_:J_L . H_l—r—‘ ,
155 160 165 170 175 180 185 190 195 200
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Rolling disturbance estimates

» in MPC, we interpret @; as predictions of disturbance values
» no need to assume they are independent, or even random variables

» when w; are not independent (or interpreted as random variables),
additional information can improve predictions

> we let @ denote the updated estimate of w; made at time s using all
information available at time s

> these are called rolling estimates of w;
> s can come from a statistical model, experts’ predictions, ...

» MPC with rolling disturbance prediction works very well in practice, is
used in many applications (supply chain, finance)
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MPC architecture

» MPC (rolling horizon, with updated predictions) splits into two
components

> the predictor uses all information available to make predictions of current
and future values of wy

> the planner optimizes actions over a planning horizon that extends into
the future, assuming the predictions are correct

» the MPC action is simply the current action in the current plan
» MPC is not optimal except in a few special cases

» but it often performs extremely well

MPC with disturbance prediction 40
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