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Stochastic control

I dynamics xt+1 = ft (xt ;ut ;wt ), t = 0; : : : ;T � 1

I xt 2 X , ut 2 U , wt 2 W

I x0;w0; : : : ;wT�1 independent

I stage cost gt (xt ;ut ); terminal cost gT (xT )

I state feedback policy ut = �t (xt ), t = 0; : : : ;T � 1

I stochastic control problem: choose policy to minimize

J = E

 
T�1X
t=0

gt (xt ;ut ) + gT (xT )

!
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Stochastic control

I can solve stochastic control problem in some cases

I X , U , W �nite (and as a practical matter, not too big)

I X , U , W �nite dimensional vector spaces, ft a�ne, gt convex quadratic

I and a few other special cases

I in other situations, must resort to heuristics, suboptimal policies
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Certainty-equivalent control

I a simple (usually) suboptimal policy

I replace each wt with some predicted, likely, or typical value ŵt

I stochastic control problem reduces to deterministic control problem,

called certainty-equivalent problem

I certainty-equivalent policy is optimal policy for certainty-equivalent

problem

I useful when we can't solve stochastic problem, but we can solve

deterministic problem

I sounds unsophisticated, but can work very well in some cases

I also called model predictive control (MPC) (for reasons we'll see later)
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Where ŵt comes from

I most likely value: choose ŵt as value of wt with maximum probability

I a random sample of wt (yes, really)

I a nominal value

I a prediction of wt (more on this later)

I when wt is a number or vector: ŵt = Ewt , rounded to be in Ut
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Optimal versus CE policy via dynamic programming

I optimal policy: V ?

T (x ) = gT (x ); for t = T � 1; : : : ; 0,

V
?

t (x ) = min
u

(gt (x ;u) +EV
?

t+1(ft (x ;u ;wt )))

�?

t (x ) 2 argmin
u

(gt (x ;u) +EV
?

t+1(ft (x ;u ;wt )))

I CE policy: V ce
T (x ) = gT (x ); for t = T � 1; : : : ; 0,

V
ce
t (x ) = min

u
(gt (x ;u) +V

ce
t+1(ft (x ;u ; ŵt )))

�cet (x ) 2 argmin
u

(gt (x ;u) +V
ce
t+1(ft (x ;u ; ŵt )))
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Computing CE policy via optimization

I CE policy �ce is typically not computed via DP

(if you could do this, why not use DP to compute optimal policy?)

I instead we evaluate �cet (x ) by solving a deterministic control

(optimization) problem

minimize
PT�1

�=t
g� (x� ;u� ) + gT (xT )

subject to x�+1 = f� (x� ;u� ; ŵ� ); � = t ; : : : ;T � 1

xt = x

with variables xt ; : : : ; xT ;ut ; : : : ;uT�1

I �nd a solution �xt ; : : : ; �xT ; �ut ; : : : ; �uT�1

I then �cet (x ) = �ut (and optimal value of problem above is V ce
t (x ))

I we don't have a formula for �cet (or V ce
t ) but we can compute �cet (x )

(V ce
t (x )) for any given x by solving an optimization problem

Certainty-equivalent control 8



Certainty-equivalent control

I need to solve a (deterministic) optimal control problem in each step,

with a given initial state

I these problems become shorter (smaller) as t increases toward T

I call solution of optimization problem at time t

�xtjt ; : : : ; �xT jt ; �utjt ; : : : ; �uT jt

I interpret as plan of future action at time t
(based on assumption that disturbances take values ŵt ; : : : ; ŵT�1)

I solving problem above is planning

I CE control executes �rst step in plan of action

I once new state is determined, update plan
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Example: Multi-queue serving

I N queues with capacity C : state is qt 2 f0; : : : ;Cg
N

I observe random arrivals wt from some known distribution

I can serve up to S queues in each time period:

ut 2 f0; 1g
N ; ut � qt ; 1

T
ut � S

I dynamics qt+1 = (qt � ut + wt )[0;C ]

I stage cost

gt (qt ;ut ;wt ) = �T
qt + �T

q
2
t| {z }

queue cost

+ 
T (qt � ut + wt �C )+| {z }
rejection cost

I terminal cost gT (qT ) = �TqT
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Example: Multi-queue serving

consider example with

I N = 5 queues, C = 3 capacity, S = 2 servers, horizon T = 10

I jX j = 1024, jUj = 16, jWj = 32

I w
(i)
t � Bernoulli(pi )

I (randomly chosen) parameters:

p =
�

0:47; 0:17; 0:25; 0:21; 0:60
�

� =
�

1:32; 0:11; 0:63; 1:41; 1:83
�

� =
�

0:98; 2:95; 0:16; 2:12; 2:59
�


 =
�

0:95; 4:23; 7:12; 9:27; 0:82
�

� =
�

0:57; 1:03; 0:24; 0:74; 2:11
�
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Example: Multi-queue serving

I use deterministic values ŵt = (1; 0; 0; 0; 1), t = 0; : : : ;T � 1

I other choices lead to similar results (more later)

I problem is small enough that we can solve it exactly (for comparison)
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Example: Multi-queue serving

I 10000 Monte Carlo simulations with optimal and CE policies

I J ? = 55:55, J ce = 57:04 (very nearly optimal!)
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Example: Multi-queue serving

I red indicates �ce(x ) 6= �?(x ); policies di�er in 37.91% of entries

x

t
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Example: Multi-queue serving

I with (reasonable) di�erent assumed values, such as ŵt = (0; 0; 0; 0; 1),

get di�erent policies, also nearly optimal

I interpretation: CE policies work well because

I there are many good (nearly optimal) policies

I the CE policy takes into account the dynamics, stage costs

I there is no need to use CE policy when (as in this example) we can just

as well compute the optimal policy
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Linear-quadratic regulator (LQR)

I X = Rn , U = Rm

I xt+1 = Axt + But + wt

I x0;w0;w1; : : : independent zero mean, E x0x
T
0 = X0, Ewtw

T
t = Wt

I cost (with Qt � 0, Rt > 0)

J = (1=2)

T�1X
t=0

�
x
T
t Qtxt + u

T
t Rtut

�
+ (1=2)xTT QTxT

I can solve exactly, since V ?

t is quadratic, �?

t is linear

I can compute J ? exactly
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CE for LQR

I use ŵt = Ewt = 0 (i.e., neglect disturbance)

I for LQR, CE policy is actually optimal

I in LQR lecture we saw that optimal policy doesn't depend on W

I choice W = 0 corresponds to deterministic problems in CE

I another hint that CE isn't as dumb as it might �rst appear

I when Ewt 6= 0, CE policy is not optimal
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Constrained LQR

I same as LQR, but replace U = Rm with U = [�1; 1]m

I i.e., constrain control inputs to [�1; 1] (`actuator limits')

I cannot practically compute (or even represent) V ?

t , �
?

t

I we don't know optimal value J ?
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CE for constrained linear-quadratic regulator

I CE policy usually called MPC for constrained LQR

I use ŵt = Ewt = 0

I evaluate �cet (x ) by solving (convex) quadratic program (QP)

minimize (1=2)
PT�1

�=t

�
xT� Q�x� + uT

� R�u�
�
+ (1=2)xTT QTxT

subject to x�+1 = Ax� + Bu� ; � = t ; : : : ;T � 1

x� 2 Rn ; u� 2 [�1; 1]m � = t ; : : : ;T � 1

xt = x

with variables xt ; : : : ; xT ;ut ; : : : ;uT�1

I �nd solution �xt ; : : : ; �xT ; �ut ; : : : ; �uT�1

I execute �rst step in plan: �
mpc
t (x ) = �ut

I these QPs can be solved super fast (e.g., in microseconds)
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Example

consider example with

I n = 8 states, m = 2 inputs, horizon T = 50

I A;B chosen randomly, A scaled so maxi j�i (A)j = 1

I X = 3I , W = 1:5I

I Qt = I , Rt = I

I associated (unconstrained) LQR problem has

I kuk1 > 1 often

I J lqr = 85 (a lower bound on J lqr for constrained LQR problem)
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Example

I �clipt (x ) = (K lqr
t x )[�1;1] (`saturated LQR control')

I yields performance J clip = 1641:8

I MPC policy �mpc
t (x )

I yields performance Jmpc = 1135:3

I we don't know J ? (other than J ? > J lqr = 85)

I sophisticated lower bounding techniques can show Jmpc very near J ?
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Sample traces
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In�nite horizon MPC

I want approximate policy for in�nite horizon average (or total) cost

stochastic control problem

I replace wt with some typical value ŵ (usually constant)

I in most cases, cannot solve resulting in�nite horizon deterministic

control problem

I instead, solve the deterministic problem over a rolling horizon (or

planning horizon) from current time t to t +T
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In�nite horizon MPC

I to evaluate �mpc(x ), solve optimization problem

minimize
Pt+T�1

�=t
g(x� ;u� ) + geoh(xt+T )

subject to x�+1 = f (x� ;u� ; ŵ); � = t ; : : : ; t +T � 1

xt = x

with variables xt ; : : : ; xt+T ;ut ; : : : ;ut+T�1

I �nd a solution �xt ; : : : ; �xt+T ; �ut ; : : : ; �ut+T�1

I then u
mpc
t (xt ) = �ut

I geoh is an end-of-horizon cost

I these optimization problems have the same size (cf. �nite horizon MPC)
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In�nite horizon MPC

I design parameters in MPC policy:

I disturbance predictions ŵt (typically constant)

I horizon length T

I end-of-horizon cost geoh

I some common choices: geoh(x ) = 0, geoh(x ) = minu g(x ;u)

I performance of MPC policy evaluated by Monte Carlo simulation

I for T large enough, particular value of T and choice of geoh shouldn't

a�ect performance very much
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Example: Supply chain management

I n nodes (warehouses/bu�ers)

I xt 2 Rn is amount of commodity at nodes at time t

I m unidirectional links between nodes, external world

I ut 2 Rm is amount of commodity transported along links at time t

I incoming and outgoing note incidence matrix:

A
in(out)
ij =

(
1 link j enters (exits) node i

0 otherwise

(include wholesale supply links and retail delivery links)

I dynamics: xt+1 = xt +Ainut �Aoutut
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Example: Supply chain management

I bu�er limits: 0 � xt � xmax

I warehousing/storage cost: W (xt ) = �Txt + �Tx 2t , �; � � 0

I link capacities: 0 � ut � umax

I Aoutut � xt (can't ship out what's not on hand)
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Example: Supply chain management

I shipping/transportation cost: S(ut ) = S1((ut )1) + � � �+ Sn((ut )m)

I for internode link, Si ((ut )i ) = 
(ut )i is transportation cost

I for wholesale supply link, Si ((ut )i ) = (pwht )i (ut )i is purchase cost

I for retail delivery link, Si ((ut )i ) = �pretminf(dt )i ; (ut )ig is the

negative retail revenue, where pret is retail price and (dt )i is the demand

I we assume wholesale prices (pwht )i are IID, demands (dt )i are IID

I link �ows ut chosen as function of xt , p
wh
t , dt

I objective: minimize average stage cost

J = lim
T!1

1

T

TX
t=0

(S(ut ) +W (xt ))
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Example

I n = 4 nodes, m = 8 links

I links 1,2 are wholesale supply; links 7,8 are retail delivery
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Example

I bu�er capacities xmax = 3

I link �ow capacities umax = 2

I storage cost parameters � = � = 0:01; 
 = 0:05

I wholesale prices are log-normal with means 1, 1.2; variances 0.1, 0.2

I demands are log-normal with means 1, 0.8; variances , 0.4, 0.2

I retail price is pret = 2
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Example

I MPC parameters:

I future wholesale prices and retail demands assumed equal to their means
(current wholesale prices and demands are known)

I horizon T = 30

I end-of-horizon cost geoh = 0

I MPC problem is QP (and readily solved)

I results: average cost J = �1:69

I wholesale purchase cost 1:20

I retail delivery income �3:16

I lower bounding techniques for similar problems suggests MPC is very

nearly optimal
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MPC sample trajectory: supply
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MPC sample trajectory: delivery

155 160 165 170 175 180 185 190 195 200
0

0.5

1

1.5

2

2.5

3

155 160 165 170 175 180 185 190 195 200
0

0.5

1

1.5

2

2.5

3

u7

u8

t

solid: delivery; dashed: demand

In�nite horizon model predictive control 35



MPC sample trajectory
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MPC sample trajectory

155 160 165 170 175 180 185 190 195 200
0

0.5

1

1.5

2

2.5

3

155 160 165 170 175 180 185 190 195 200
0

0.5

1

1.5

2

storage

shipping

t

u
4
,
u
6

x
1
,
x
4

In�nite horizon model predictive control 37



Outline

Certainty-equivalent control

Constrained linear-quadratic regulator

In�nite horizon model predictive control

MPC with disturbance prediction

MPC with disturbance prediction 38



Rolling disturbance estimates

I in MPC, we interpret ŵt as predictions of disturbance values

I no need to assume they are independent, or even random variables

I when wt are not independent (or interpreted as random variables),

additional information can improve predictions ŵt

I we let ŵtjs denote the updated estimate of wt made at time s using all

information available at time s

I these are called rolling estimates of wt

I ŵtjs can come from a statistical model, experts' predictions, . . .

I MPC with rolling disturbance prediction works very well in practice, is

used in many applications (supply chain, �nance)
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MPC architecture

I MPC (rolling horizon, with updated predictions) splits into two
components

I the predictor uses all information available to make predictions of current
and future values of wt

I the planner optimizes actions over a planning horizon that extends into
the future, assuming the predictions are correct

I the MPC action is simply the current action in the current plan

I MPC is not optimal except in a few special cases

I but it often performs extremely well
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