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Covariance Estimation in Two-Level Regression
Nicholas Moehle and Dimitry Gorinevsky

Abstract—This paper considers estimation of covariance ma-
trices in multivariate linear regression models for two-level data
produced by a population of similar units (individuals). The
proposed Bayesian formulation assumes that the covariances
for different units are sampled from a common distribution.
Assuming that this common distribution is Wishart, the optimal
Bayesian estimation problem is shown to be convex. This paper
proposes a specialized scalable algorithm for solving this two-
level optimal Bayesian estimation problem. The algorithm scales
to datasets with thousands of units and trillions of data points
per unit, by solving the problem recursively, allowing new
data to be quickly incorporated into the estimates. An example
problem is used to show that the proposed approach improves
over existing approaches to estimating covariance matrices in
linear models for two-level data.

I. INTRODUCTION

Consider a two-level dataset

D =
{
{xi(t), yi(t)}Ti

t=1

}N

i=1
, (1)

where index i is the dataset number, index t is the sample
number. Each xi(t) ∈ Rn is a vector of independent
variables (regressors), and each yi(t) ∈ Rm is a vector
of dependent variables. There are N datasets at all; dataset
i includes a total of Ti samples. Each dataset describes a
separate individual unit of the overall population.

This paper studies linear multivariate regression models of
the two-level data (1). For each unit, the model is described
by the mean (regression parameters) and covariance of the
model residual. The means for different units are assumed to
be different; this is known as a model with fixed effects. The
covariances for different units are assumed to be different but
related; this is a novel formulation.

In the motivating example considered below, the covari-
ance estimates are used in statistical monitoring to find out-
liers, which are labeled as possibly anomalous data. Accurate
covariance estimation is necessary for the monitoring to be
accurate. The described two-level formulation can be useful
in many other problems requiring accurate estimation of co-
variance matrices, such as classification, linear discriminant
analysis, portfolio management, and others.

The special case N = 1 in (1) yields a standard multi-
variate regression. In that case, accurate estimation of the
m2 elements of the covariance matrix requires that T1 � m
[7]. For large m this might not hold. For an ill-conditioned
covariance matrix, even more data samples are required.
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Using data from multiple units in a two-level data set can
improve the covariance estimation accuracy.

Covariance matrix estimation for one-level datasets has at-
tracted substantial attention earlier. Several approaches to the
maximum likelihood estimation (MLE) with shrinkage (reg-
ularization) have been proposed, e.g., see [10], [11] where
further references can be found. The approaches related to
this paper add regularization by using a Bayesian prior in a
maximum a posteriori probability (MAP) estimation, such as
an inverse Wishart prior for the covariance matrix, see [13].
The inverse Wishart is the conjugate prior for the covariance
matrix of a multivariate normal distribution. As such, the
MAP solution is a generalization of the MLE solution and
has the same attractive properties. In particular, the solution
can be efficiently computed for large datasets using recursive
least squares (RLS) or a related formulation.

Two-level datasets are considered in multivariate analysis
of covariance (MANCOVA), e.g., see [17]. In MANCOVA,
the null hypothesis is that all data follows the same distri-
bution. The goal is to decide if inter-unit covariance and
intra-unit covariance is compatible with this hypothesis.

Two-level regression is used in ‘soft’ applications such
as social sciences, biology, economics, and medicine (drug
testing) [1], [2], [9], [18]. The most established solution
approaches are based on Gibbs sampling [8] and other
approximate methods. More scalable methods have been
developed to estimate covariance structure for two-level
datasets using expectation-maximization (EM) methods as a
heuristic to find the maximum-likelihood estimates [3], [12].

There appears to be little prior work on scalable two-
level modeling applicable to machine data monitoring. One
exception is [6], discussing scalable algorithms for estimating
a two-level regression model of aircraft fleet data. In [6], the
same covariances are assumed for all units.

The contributions of this paper are as follows. First,
we propose a novel two-level linear regression formula-
tion with fixed effects in the regression parameters and in
the covariances of the random effects. In this hierarchical
Bayesian formulation the unit covariances are realizations of
the generating Wishart distribution. Second, we show that for
the proposed model, Bayesian optimal estimation for data (1)
yields a (nonlinear) convex optimization problem. Third, we
formulate a specialized convex optimization algorithm that
solves the estimation problem using recursive updates and is
scalable to very large datasets. Finally, numerical examples
demonstrate that the proposed formulation improves accu-
racy of the estimation compared to the known methods.
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II. BASELINE PROBLEM

This section considers a single-level dataset with N = 1,
(there is only one unit). In this section we drop the unit index
i = 1. The dataset (1) becomes

{x(t), y(t)}Tt=1. (2)

As a baseline for introducing the main contribution in the
next section, this section briefly recaps the known formu-
lation of multivariate Bayesian linear regression for dataset
(2). In what follows, we use p(·) for all probability density
functions and �(·) for all log likelihood functions. The
meaning should be clear from the context.

A. Multivariate Regression

Consider a linear regression model y(t) = Bx(t) + v(t),
where B ∈ Rm×n is the regression parameter matrix and
v(t) ∈ Rm is the residual. For data (2), the model can be
compactly represented as

Y = BX + V, (3)

Y =
[
y(1) · · · y(T )

]
,

X =
[
x(1) · · · x(T )

]
, (4)

V =
[
v(1) · · · v(T )

]
.

The Bayesian formulation assumes that the residuals vi(t)
are independently generated by the normal distribution

v(t) ∼ N (0,Σ), (5)

with covariance matrix Σ ∈ Sm, where Sm is the cone of
positive definite m×m matrices.

The log likelihood function for Σ and B is

�(Σ, B | D) (6)

= −1

2
T log |Σ| − 1

2
tr
(
Σ−1(Y −BX)(Y −BX)T

)
.

The parameter matrix B ∈ Rm×n in (3) is considered a
nuisance parameter; no prior for B is specified. As discussed
in [11], [19], a prior for the covariance matrix Σ is needed
if the number of samples T is insufficiently large. A well
established approach, which we take as a baseline, is to use
an inverse Wishart prior

Σ ∼ W−1(Ψ, ν), (7)

where Ψ ∈ Sm is the scale matrix and the positive integer ν
is the number of degrees of freedom. The inverse Wishart is
the conjugate prior for the covariance matrix in a multivariate
normal distribution.

The log likelihood of the inverse Wishart prior is, up to
additive constants,

�(Σ|Ψ, ν) = −1

2
(ν +m+ 1) log |Σ| − 1

2
tr
(
ΨΣ−1

)
. (8)

The change of variables Ω1 = 1
ν+m+1Ψ and α1 = ν+m+1,

transforms (8) into the log prior

�(Σ|Ω1, α1) = −α1 log |Σ| − α1 tr
(
Ω1Σ

−1
)
. (9)

The resulting log posterior has the form

�(B,Σ|D) = −1

2
(N + α1) log |Σ| − 1

2
α1 tr

(
Ω1Σ

−1
)

(10)

− 1

2
tr
(
(Y −BX)TΣ−1(Y −BX)

)
.

The Maximum A posteriori Probability (MAP) estimates
of B and Σ minimize the negative log-posterior (10); this
minimization problem is convex in the variables Σ−1 and
Σ−1B. The first-order optimality conditions can be solved
analytically (e.g., see [17]), yielding

B = Y XT (XXT )−1 (11)

Σ =
1

N + α1

(
(Y −BX)(Y −BX)T + α1Ω1

)
. (12)

In what follows we assume that the scatter matrix XX T is
invertible. In practice, selecting independent regressors leads
to invertible XXT .

The estimates (11), (12) can be computed recursively.
These estimates can be written in terms of the scatter
matrices XXT , Y XT , and Y Y T . For (11) this is obvious;
for (12) this requires expanding the matrix product in the
numerator. As additional data become available, the scatter
matrices can be updated using rank-one recursion.

III. TWO-LEVEL MULTIPLE REGRESSION PROBLEM

The rest of the paper considers two-level dataset (1) and
(3), (4) is replaced by Yi = BiXi + Vi, (i = 1, . . . , N),
where

Yi =
[
yi(1) · · · yi(T )

]
,

Xi =
[
xi(1) · · · xi(T )

]
, (13)

Vi =
[
vi(1) · · · vi(T )

]
.

A. Baseline Approaches

The formulation of Section II can be applied to two-level
covariance estimation in two ways described below. These
are are later used to benchmark the proposed approach.

1) Pooled Regression: The multivariate linear regression
of Section II can be used for the pooled data

X =
[
X1 · · · XN

]
Y =

[
Y1 · · · YN

]
.

The obtained estimates of B and Σ are identical across the
population. The obvious deficiency of the pooled formulation
is that it ignores differences in the units. If the units are
substantially different, the obtained model can be inaccurate.
This is illustrated in the example of Section V.

2) Separate Regressions: The second approach is to ig-
nore any similarity between the units. The approach of II
is then applied separately to each pair of data matrices X i

and Yi. For each unit i, separate and unrelated estimates of
Bi and Σi are computed. The problem of this approach is
that there may be insufficient data to accurately estimate the
covariance for each unit separately.
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B. Estimation of the Two-level Model

We propose a generalization of the one-level Bayesian
optimal estimation formulation (3), (4), (11), (12), to the
two-level data (1), (13). The main novelty of the proposed
approach is in modeling the commonality of the covariance
structures of the level-one models.

Consider the regression model

yi(t) ∼ N (Bixi(t),Σi

)
. (14)

By analogy with (6), ignoring additive constants, the log
likelihood of Σi and Bi is

�(Σi, Bi|D) = −1

2
Ti log |Σi|

−1

2
tr
(
Σ−1

i (Yi −BiXi)(Yi −BiXi)
T
)
.

(15)

The one-level baseline approach of Section II, uses the
inverse-Wishart prior for the covariance matrix. The pro-
posed two-level formulation assumes that each individual
covariance matrix is sampled from a population. In our
Bayesian formulation, all individual covariance matrices are
related by having the same Wishart prior

Σi|S, β ∼ W(β−1S, β +m+ 1). (16)

This is the sampling distribution for a scatter matrix with
zero-mean normally distributed columns. It has log prior

�(Σi|S) = −1

2
(β +m+ 1) log |S|

− 1

2
β log |Σi| − 1

2
β tr

(
S−1Σi

)
.

(17)

The hyperparameter β sets the strength of the prior, the
similarity between the estimated unit covariance matrices.
The hyperparameter S is the generating covariance matrix
for the population. We propose an inverse Wishart hyperprior
for the hyperparameter S

S ∼ W−1(αΩ, α −m− 1). (18)

Below, it is shown that with this hyperprior the MLE
formulation is convex. Then, the log prior is similar to (8)

�(S|Ω, α) = −1

2
α log |S| − 1

2
α tr

(
ΩΣ−1

)
. (19)

The hyperhyperparameterα sets the strength of this hyper-
prior, how similar S is to Ω. The proposed Bayesian model
structure with the parameters, hyperparameters, and nuisance
parameters is summarized in Figure 1.

The log posterior is the sum of the log likelihood (15), the
log priors (17) for each unit, and the population log prior (19)

�(Σ1, ...,ΣN , B1, ..., BN , S|D) (20)

= −�(S|Ω, α)−
N∑
i=1

(
�(Σi|S, β) +

T∑
t=1

�(Σi, Bi|D)

)

Ω

population
covariance
prior

S
population-wide
covariance

Σ1 ΣN· · · unit covariance
matrices

B1 BN· · · nuisance
parameters

Fig. 1. The structure of the Bayesian priors.

The MAP estimates maximize (20). Substituting (15),
(17), and (19) yields the optimization problem:

minimize α tr
(
ΩΣ−1

)
+ (α+N(β +m+ 1)) log |S|

+
N∑
i=1

(
(Ti − β) log |Σi|+ β tr

(
S−1Σi

)
(21)

+ tr
(
Σ−1

i (Yi −BiXi)(Yi −BiXi)
T
) )

The decision variables in problem (21) are the matrices
Bi and Σi, for i = 1, . . . , N , and the matrix S. The
hyperparameters α, β, and Ω are assumed to be given. These
parameters can be used for tuning the estimator performance.
In the absence of better information, a reasonable choice is
Ω = ωI , where ω is a scalar and I is a unit matrix.

C. Convexity

Although the optimization problem (21) is not convex,
a change of variables yields an equivalent problem that is
convex. Define matrices Λi = Σ−1

i , Mi = Σ−1
i Bi, and

LTL = S−1. In these new decision variables, (21) becomes

minimize α tr
(
LTΩL

)
+ (α+N(β +m+ 1)) log

∣∣LTL
∣∣

+

N∑
i=1

(
− (Ti − β) log |Λi|+ β tr

(
LTΛ−1

i L
)

+ tr(Y T
i ΛiYi)− 2 tr(Y T

i MiXi) (22)

+ tr((MiXi)
TΛ−1

i (MiXi))
)

Convexity of follows from the fact that the log-det function

f : Sn
+ → R f : X �→ log |X |

and the matrix fractional function

g : Sn
+ ×Rn → R g : (X, y) �→ yTX−1y

are both convex [4]. In (22)

• log |LTL| = log(|LT |·|L|) = 2 log |L| is convex log-det
function.
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• tr(LTΛ−1
i L) =

∑n
j=1(Lej)

TΛ−1
i (Lej), where the ej

are the unit vectors is convex in both L and Λ i as the
sum of matrix fractional functions.

• (Ti − β) log |Λi| is convex for Ti ≥ β as a log-det
function.

Other terms are trivially convex or are similar to the above.

IV. SOLUTION OF TWO-LEVEL PROBLEM

A general-purpose convex solver could be used to compute
a solution to (22). However, such solution will be inefficient
or impossible for a large dataset. The number of decision
variables in the problem is proportional to the number of
units and can be very large. A large dataset may not even fit
into computer memory. This section outlines a specialized
method for computing the global optimum of (22). The
method is efficient and scalable to very large problems.

A. First Order Optimality Conditions

The proposed approach is to compute the first order con-
ditions for optimality to (22) and solve them iteratively. We
will find these first order conditions using the transformed
variables, but will iteratively solve them using the original,
Bayesian model variables. This amounts to a block coordi-
nate descent method on the transformed, convex problem.

Differentiating (22) with respect to L and then changing
back to the original Bayesian model variables yields

S =
1

α+N(β +m+ 1)

(
αΩ + β

N∑
i=1

Σi

)
. (23)

Differentiating (22) with respect to Λi gives in the original
Bayesian model variables

0 = −(Ti − β)Σi − βΣiSΣi + YiY
T
i −BiXiX

T
i B

T
i .
(24)

This is an algebraic Riccati equation. It can be solved for
Σi in cubic time using standard solvers. Differentiating (22)
with respect to Mi yields

0 = 2Λ−1
i MiXiX

T
i − 2YiX

T
i .

Changing back to the original Bayesian model variables gives

Bi = YiX
T
i (XiX

T
i )

−1. (25)

B. Discussion

The optimal estimate of S, given by (23), is a weighted
sum of Ω and the individual covariance matrices. For α = 0
and N large, S is the average of the unit covariance matrices.
The optimal estimate (25) of the regression parameters B i is
the same as for the one-level regression for each unit.

For β = 0, the solutions to (24) and (25) are the MAP
estimates to (see (11), (12)) for the one-level regression
problems for each unit. To see this, substitute the solution
for Bi in (25) into (24) and set β = 0 to obtain the sample
covariance matrix

Σi =
1
Ti

(
YiY

T
i − YiX

T
i (XiX

T
i )

−1Y T
i XT

i

)
,

which has the same form as (12) for B = Bi and α1 = 0.

· · ·New data point
{x1(t), y1(t)}

New data point
{xN(t), yN(t)}

· · ·Compute X1X
T
1 ,

Y1X
T
1 , Y1Y

T
1

Compute XNXT
N ,

YNXT
N , YNY T

N

· · ·Compute B1

from (25)
Compute BN

from (25)

Initialize S,Σ1, . . . ,ΣN

Compute Σ1 from (24) Compute ΣN

from (24)
· · ·

Compute S from (23)

Fig. 2. The steps in the algorithm.

C. Algorithm

The solution for the two-level estimation problem of
Section III can be computed as follows

1) Compute the scatter matrices XiX
T
i , YiX

T
i , YiY

T
i ,

where Xi and Yi are given by (13).
2) Compute Bi (25) for each unit i.
3) Initialize the matrices Σ1, . . . ,ΣN and S.
4) For each i, solve (24) for Σi with S given.
5) Solve (23) for S, with Σ1, . . . ,ΣN given.
6) Check for convergence. If the update have not con-

verged, go to step 4.

The proposed algorithm is summarized in Figure IV-C.
The algorithm performs block coordinate descent in the
convex optimization problem (22). The coordinate blocks are
given by matrices Σ1, . . . ,ΣN and S. Such an algorithm is
guaranteed to converge [16], [14].

The algorithm tuning parameters are the parameters of the
two-level model explained in Section III, α > 0, Ω ∈ Sm

+

(18), and β > 0 (16). The scalar α and matrix Ω in (18)
should be chosen in the same way as the parameters α1 and
Ω1 for the inverse Wishart prior in Section II-A. For large α,
the population-level covariance S will be weighted heavily
toward Ω. The scalar β affects the strength of the prior for
the covariance matrices Σi. A larger value of β enforces
greater similarity amongst the population of the covariances.

In the proposed algorithm, the optimal estimates depend
on the data (1) through the scatter matrices X iXi, YiX

T
i ,

and YiY
T
i only. This enables a recursive solution for a

large (or growing) dataset (1). As new data is added, the
scatter matrices can be recursively computed using rank-one
update. Furthermore, for the proposed algorithm, the scatter
matrices for each unit do not need to be loaded into memory
simultaneously. This allows to parallelize computation of Σ i.
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D. Algorithmic Complexity

To analyze the computational complexity of the proposed
algorithm, it is assumed that O(n) = O(m), and that all
units have approximately the same number of data points,
and that there are many more data points per unit than there
are units. i.e. Ti ≈ T � m,n.

1) The cost of computing scatter matrices XiX
T
i , YiXi,

and YiYi for N units is approximately O(n2NT ).
2) Computing Bi (25) for each unit given the scatter

matrices costs O(n3). This is done once for each unit,
so the overall complexity is O(n3

xN).
3) Computing coefficients of Riccati equation (24) costs

O(n2) for each unit. Solving it costs O(n3) [5]. Over
all units, the complexity is O(n3N).

4) Coomputing Σtrue from (23) costs O(n2N).
The global optimum is found by completing steps 1 and
2, then iterating over steps 3 and 4 until convergence. This
process costs O(n2NT + n3NNiterations), where Niterations is
the number of iterations over steps 2 and 3 required for
convergence. The recursive formulation allows for T̃ new
data points to be added for each unit, and the estimates
updated, for a cost of O(n2NT̃ + n3NNiteration). These
computations can be fully parallelized over N processors
at the cost O(n2T̃ + n3Niterations) for each.

V. EXAMPLES

The first of two examples in this section is a simple two-
output dataset explain the use of the proposed two-level
estimation approach. The second example describes a gas
turbine fleet and illustrates the algorithm performance as
compared to the baseline approaches.

A. Example 1: Two-output Dataset

We consider a dataset (1) with m = 2, n = 1, N = 4 and
Ti = 100 for all valid i. We assume that xi(t) = 1 for all i
and t. Then the matrices Bi ∈ R2×1 are the means of the
multivariate normal distributions for yi(t).

In this example, the elements of Bi (a column) are
generated using a zero-mean normal distribution with covari-
ance 3I2×2. The population covariance matrices Σ i ∈ S2

are generated independently for each unit following Σ i ∼
W(S/100, 100+m+ 1) distribution with

S =

[
1 1

20
1
20

1
10

]
. (26)

Matrices Bi, Σi specify the model for unit i. The output
vectors yi(t) were generated independently from the distri-
butions yi(t) ∼ N (Bi,Σi).

The generated dataset (1) was processed using the pro-
posed method. The algorithm of Section IV-C was tuned by
using the regularization parameters α = 0, Ω = I2,2 in (18),
and β = 100 in (16). The resulting covariance estimates for
each unit are shown in Figure 3. Each ellipsoid is described
by the center Bi and the covariance matrix Σi. The plotted
ellipsoids are scaled up by a factor of 3 such that they contain
most of the data points. The novel (proposed) algorithm
implemented sequentially runs on a PC in 0.09 seconds.

Fig. 3. Estimation results for Example 1 two-output dataset

TABLE I

EXAMPLE 2 GAS TURBINE MODEL INPUTS AND OUTPUTS

Variable Description Unit

x[1] inlet temp. ◦F
x[2] inlet pressure in. H2O
x[3] part load fraction nondimensional
x[4] steam injection flow lb/hr
y[1] heat rate BTU/kWh
y[2] efficiency nondimensional

The ellipsoids corresponding to the ground truth covari-
ance matrices Σi and the means Bi are plotted by the dashed
lines, for all 4 units. The data yi(t) used in the estimation
are plotted as dots. The ellipsoids produced by the proposed
novel method are plotted by solid lines. They correspond to
the estimated covariance matrices Σ̂i (enlarged by a factor
of 3) and the estimated means B̂i. As the figure shows, the
ground truth and the estimated ellipsoids match closely.

B. Example 2: Gas Turbine Fleet

The next example uses simulated data from a fleet of
gas turbines for power generation. The models of the form
(14), estimated from the data, could be used for statistical
monitoring of the performance of individual turbines.

The turbine model is based on [15]. The meanings of
components x[j] of the input vector x and the components
y[j] of the output vector y are explained in Table V-B. The
model of [15] was linearized around the heat rate of 10, 000
BTH/kWh and efficiency of 80% (this is the operating point
given in [15]). A central linear model of the form (14) is
then described by a parameter matrix

Bideal =

[−0.2962 −0.2936 1 0.733
0.314 0.385 0.947 −0.951

]
(27)

The linear input-output map Bi for each unit in the
simulated fleet of the turbines was generated from the central
model (27) as follows. Each column of B i was normally
distributed with mean given by the corresponding column of
Bideal and covariance matrix Σi. The covariances Σi ∈ S2

were generated for each unit, independently according to
Σi ∼ W(S/β, β + m + 1), following the assumptions
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TABLE II

EXAMPLE 2 TURBINE FLEET RESULTS: 30 UNITS, 100 SAMPLES EA

Performance
∥∥Σi − Σ̂i

∥∥
F

∥∥Σ−1
i − Σ̂−1

i

∥∥
F

Novel 0.0271 0.624

Separate 0.0536 1.65

Pooled 1.17 8.92

TABLE III

EXAMPLE 2 TURBINE FLEET RESULTS: 500 UNITS, 5000 SAMPLES EA

Performance
∥∥Σi − Σ̂i

∥∥
F

∥∥Σ−1
i − Σ̂−1

i

∥∥
F

Novel 4.38 · 10−4 15.1

Separate 5.23 · 10−4 17.4

Pooled 0.129 794

made in Section III-B. The 2×2 population-wide generating
covariance matrix S was taken to be the same as in (26).

Given Bi and Σi, the dataset was generated as follows.
Input vectors xi(t) ∈ R4 for turbine i at time t, were inde-
pendently sampled from the distribution x i(t) ∼ N (0,Σx

i ),
with Σx = I . The output vectors yi(t) ∈ R2 were then
generated in accordance with yi(t) ∼ N (Bixi(t),Σi).

We considered a population of N = 5000 individual units
with Ti = T = 5000 data points for each units. The data
was processed according to the proposed two-level method,
as outlined in Figure IV-C, and also according to the both
baseline techniques discussed in Section III-A. The algorithm
used regularization parameters α = 0, Ω = I2,2 in (18) ,
and β = 2000 in (16). The time taken to run the algorithm
sequentially on a PC was 8.1 seconds.

C. Algorithm Performance

Our motivation has been primarily to estimate the covari-
ance matrices. One natural performance metric is the popula-
tion average Frobenius distance between the true covariance
Σi and the estimated covariance Σ̂i for each unit.

‖Σi − Σ̂i‖F (28)

A possible motivation for the two level regression model-
ing of the turbine fleet data is multivariate monitoring of
anomalies. Such monitoring could be implemented using
Hotelling-type statistics

T2 =
(
yi(t)− B̂ixi(t)

)T
Σ̂−1

i

(
yi(t)− B̂ixi(t)

)
where B̂i and Σ̂i are the estimates of the respective matrices
obtained by the algorithm. The monitoring performance,
then, depends on the estimation accuracy of the inverse co-
variance matrix. Therefore, the second performance metrics
of the algorithm is the population-wide average of

‖Σ−1
i − Σ̂−1

i ‖F (29)

Monte Carlo simulations were completed to estimate (28)
and (29) by repeatedly generating the data as described

above. The average values obtained in the 100 completed
simulations are summarized in Tables II and III. Both metrics
(28) and (29) improve for the proposed method compared to
the two baseline methods. The improvement is larger for the
smaller dataset in Example 1. The model estimation errors
‖B̂i −Bi‖F are very small in all cases and are not shown.

VI. CONCLUSION

We have presented a technique for estimating linear mod-
els and covariances for two-level datasets. The proposed
Bayesian approach assumes that the covariance matrices are
sampled from a common population, It uses data from other
units to improve the estimation of the individual covariances.
The approach is scalable to very large datasets that may
not fit into computer memory. In the provided simulation
example, the technique shows an improvement over two
versions of a standard one-level Bayesian approach to linear
model and covariance estimation.
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