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PiecewiseQuadratics.jl

e Represent and manipulate univariate quadratic functions of the form
f(z) = pz? + qz + 7, Vz € [Ib, ub)
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PiecewiseQuadratics.jl

e Represent and manipulate univariate quadratic functions of the form
f(z) = pz? + qz + 7, Vz € [Ib, ub)
e Implements several methods useful for optimization

— sum
— derivative

— convex envelope
— proximal operator

e Applications to cost functions
— Higher fidelity
— Computationally tractable
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Example

2 — 3z 4+ 3 ifze[-00,3

— z + 3 ifzel3

flz)=1< 222 — 20z + 47 ifz €[4,
z — 7 ifzel6 75
4z — 29 ifz€[7.5,00

using PiecewiseQuadratics
f = PiecewiseQuadratic([

# BoundedQuadratic( 1b, wub, P, q, r),
BoundedQuadratic(-Inf, 3.0, 1.0, -3.0, 3.0),
BoundedQuadratic( 3.0, 4.0, 0.0, -1.0, 3.0),
BoundedQuadratic( 4.0, 6.0, 2.0, -20.0, 47.0),
BoundedQuadratic( 6.0, 7.5, 0.0, 1.0, -7.0),
BoundedQuadratic( 7.5, Inf, 0.0, 4.0, -29.0)

D;
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Plot

using Plots
plot(get_plot(£f); ...)
plot! (get_plot(simplify(envelope(£)));
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Plot

using Plots
plot(get_plot(£f); ...)
plot! (get_plot(simplify(envelope(£))); ...)

—— piecewise quadratic
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Linearly Constrained Separable Optimiaziton

A linearly constrained separable optimization (LCSO) problem:

n
minimize  f(z) = Z fi(zs)

i=1
subject to Az = b,

where
e the decision variable is z € R

e the parameters are A € R™*™, b € R™, and the functions f;

1See: arXiv:2103.05455
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Linearly Constrained Separable Optimiaziton

A linearly constrained separable optimization (LCSO) problem:

n
minimize  f(z) = Z fi(zs)
i=1
subject to Az = b,
where

e the decision variable is z € R

e the parameters are A € R™*™, b € R™, and the functions f;

LCSO problems can be solved using ADMM.!
e Exactly, if the f; are convex

e Approximately, if they aren’t
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Extended-Form LCSO Problems

An extended-form LCSO problem:

L 1 -
minimize §$TP$ +q7z + Zl fi(zi)
1=
subject to Az =,
where
e g€ R", P c 8% is a symmetric positive semidefinite matrix

e f; are piecewise quadratic functions
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Extended-Form LCSO Problems

An extended-form LCSO problem:

L 1 -
minimize §$TP$ +q7z + Zl fi(zi)
1=
subject to Az =,
where
e g€ R", P c 8% is a symmetric positive semidefinite matrix
e f; are piecewise quadratic functions

e Extended-form LCSO problems can be reduced to standard LCSO
problem (using an eigendecomposition)?

2See: arXiv:2103.05455
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LCSO.jl

e Solves LCSO problems using ADMM (more later...)

LCSO.jl
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LCSO.jl

e Solves LCSO problems using ADMM (more later...)
e Works with either standard- or extended-form problems

e Can be used to solve convex and non-convex problems (convergence
is only guaranteed for convex problems)

e In practice, converges to a moderately accurate solution quickly
(even if the f; are very complicated)

e The separable functions f; must be piecewise quadratic (see
PiecewiseQuadratics.jl)

(In theory, could be extended to any f; that support a prox method)

LCSO.jl
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using LCSO
using PiecewiseQuadratics

n =4 # num features
m =2 # num constraints

LCSO.jl

Example
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Example

using LCSO
using PiecewiseQuadratics

=}
]

4 # num features
m =2 # num constraints

# construct problem data

x0 = rand(n)
X = rand(n, n)
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Example

using LCSO
using PiecewiseQuadratics

=}
]

4 # num features
m =2 # num constraints

# construct problem data
x0 = rand(n)
X = rand(n, n)

# ensure P is PSD
P = X'X

q = rand(n)
A

b

rand(m, n)
= A *x x0

LCSO.jl
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Example

using LCSO
using PiecewiseQuadratics

=}
]

4 # num features
m =2 #num constraints Recall the extended-form (2)

# construct problem data

_ 1 -

x0 = rand(n) i — T T .

X - rend(n. m minimize Sz Pzr+qg'z+ E 1 fi(zi)
1=

subject to Az =0b.

# ensure P is PSD
P =X'X

q = rand(n)

A = rand(m, n)

b =A% x0
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Example

# z1 has to be € [—1,2]U[2.5,3.5]

# with quadratic penalty € [—1,2]

# and linear penalty € [2.5,3.5]

f1 = PiecewiseQuadratic([
BoundedQuadratic( -1, 2,1,0,0),
BoundedQuadratic(2.5,3.5,0,1,0)

D

LCSO.jl
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Example

# z1 has to be € [—1,2]U[2.5,3.5]

# with quadratic penalty € [—1,2]

# and linear penalty € [2.5,3.5]

f1 = PiecewiseQuadratic([
BoundedQuadratic( -1, 2,1,0,0),
BoundedQuadratic(2.5,3.5,0,1,0)

D

# o has to be € [—20,10]

f2 = PiecewiseQuadratic([
BoundedQuadratic(-20,10,0,0,1)

ib)
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12



Example

# z1 has to be € [—1,2]U[2.5,3.5]

# with quadratic penalty € [—1,2]
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Example
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# x3 has to be € [—5,10]
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LCSO.jl

£ = [f1, £2, £3, f4]
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# z1 has to be € [—1,2]U[2.5,3.5]

# with quadratic penalty € [—1,2]

# and linear penalty € [2.5,3.5]
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# T4 has to be exactly 1.231
f4 = indicator(1.231, 1.231)

LCSO.jl

£ = [f1, £2, £3, f4]

params = AdmmParams(P, q, A, b, f)

12



Example

# z1 has to be € [—1,2]U[2.5,3.5]

# with quadratic penalty € [—1,2]

# and linear penalty € [2.5,3.5]
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BoundedQuadratic( -1, 2,1,0,0),
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D
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BoundedQuadratic(-20,10,0,0,1)

ib)

# x3 has to be € [—5,10
£f3 = indicator(-5, 10)

# T4 has to be exactly 1.231
f4 = indicator(1.231, 1.231)

LCSO.jl

£ = [f1, £2, £3, f4]
params = AdmmParams(P, q, A, b, f)

# solve
vars, stats = optimize(params)
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Example

# x1 has to be € [—1,2]U[2.5,3.5] £ = [f1, £2, £3, f4]
# with quadratic penalty € [—1,2]
# and linear penalty € [2.5,3.5] params = AdmmParams(P, q, A, b, f)

f1 = PiecewiseQuadratic([
BoundedQuadratic( -1, 2,1,0,0), 7 solve

BoundedQuadratic(2.5,3.5,0,1,0)  V&rs, stats = optimize(params)
b print(vars.x) # optimal =
# o5 has to be € [-20,10] # [-0.0493, 1.218, -1.932, 1.231]
f2 = PiecewiseQuadratic([

BoundedQuadratic(-20,10,0,0,1)
ib)

# x3 has to be € [—5,10
£f3 = indicator(-5, 10)

# T4 has to be exactly 1.231
f4 = indicator(1.231, 1.231)

LCSO.jl
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e Portfolio optimization

LCSO.jl

Applications
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Applications

e Portfolio optimization
e Radiation treatment planning

e Dynamic energy management

LCSO.jl
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Applications

e Portfolio optimization

Radiation treatment planning

Dynamic energy management

LCSO.jl
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JuliaFirstOrder

e GitHub organization for first-order methods in Julia
— https://github.com/JuliaFirstOrder
e Plan to migrate several related packages

— ProximalOperators.jl
— ProximalAlgorithms.jl
— StructuredOptimization jl

e Thank you to Miles Lubin for the introductions!

JuliaFirstOrder

15
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Portfolio Optimization

The original mean—variance portfolio optimization problem of Markowitz,
i.e., "Risk Minimization”

minimize yzT3%z — uTz
subject to 1Tz =1,

(3)

where

e z € R" is the fraction of the portfolio value in each of n assets

Portfolio Optimization
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Portfolio Optimization

The original mean—variance portfolio optimization problem of Markowitz,
i.e., "Risk Minimization”
minimize yzT3%z — uTz 3)
subject to 1Tz =1,
where
e z € R" is the fraction of the portfolio value in each of n assets

e 1 € R™ is the expected return forecast for the n assets, meaning
wTz is the expected portfolio return

e X € Si+ is the asset return covariance matrix, meaning zT¥z is the
variance of the portfolio return

e v > 0 is the risk aversion parameter

Portfolio Optimization
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...With Separable Costs!

The portfolio optimization problem with separable costs:

minimize  yzTZSz — pTz + > | fi(zs)

4
subject to 1Tz =1, )
where
e f; are asset-level penalties, like taxes and trading costs, and are
piecewise quadratic
Portfolio Optimization
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Separable cost examples

e Trading costs:

0 Zi = Tinit,;

fitrd(mi) — Si‘mi — mini‘c,i| + trd
=

otherwise

Portfolio Optimization
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Separable cost examples

e Trading costs:

0 T; = Tinit ¢
trd 7 init,?
J7(@i) = silws — Tinite| + 4, ,
c;'®  otherwise
e Holding cost:
0 z; =0
hold/,. \ _ i
f ) = ctold  otherwise

7

Portfolio Optimization 19



Separable cost examples

e Trading costs:

0 T; = Tinit ¢
trd 7 init,?
[ (@) = silTi — Tinit,s| + ,
ctrd otherwise
1
e Holding cost:
thId(iv ) 0 Ti = 0
3 i) = .
c?‘ﬂd otherwise
e Position limits:
i 0 Tlb.z <z, <z b.i
1 0 > L > dubyse
[ (@) =

oo otherwise
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Separable cost examples

Trading costs:

0 T; = Tinit ¢
trd 1 init,?
J7(@i) = silws — Tinite| + 4, ,
c; otherwise
Holding cost:
hold/ \ _ 0 z; =0
fi (xl) - hold .
c; otherwise
Position limits:

: 0 xlb»<x'<xb'
1 0 > L > Lube
[ (@) =

oo otherwise

Combinations of these:

films) = 9 (2s) + 20 (as) + £ ()

Portfolio Optimization
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Relaxation

e Problems are often nonconvex

e One way to handle this: Relax the problem by replacing f; with its
convex envelope

7" (z) = sup{g(z) | g is convex and g(z) < fi(z), = € dom(f;)},

then use the result to recover a solution to the original problem

Portfolio Optimization 20



Relaxation

Problems are often nonconvex

One way to handle this: Relax the problem by replacing f; with its
convex envelope

7" (z) = sup{g(z) | g is convex and g(z) < fi(z), = € dom(f;)},

then use the result to recover a solution to the original problem

Easy to compute when f; are piecewise quadratic

Supported by PiecewiseQuadratics.jl

Portfolio Optimization
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Questions?
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