
Linearly Constrained Separable Optimization

using PiecewiseQuadratics.jl and LCSO.jl

Nicholas Moehle Ellis Brown Mykel Kochenderfer

BlackRock AI Labs

JuliaCon JuMP-dev Workshop

July 2021

https://www.nicholasmoehle.com/
http://ellisbrown.github.io/
https://mykel.kochenderfer.com/

Outline

PiecewiseQuadratics.jl

LCSO.jl

JuliaFirstOrder

Portfolio Optimization

2

https://github.com/JuliaFirstOrder
https://arxiv.org/abs/2103.05455

Outline

PiecewiseQuadratics.jl

LCSO.jl

JuliaFirstOrder

Portfolio Optimization

PiecewiseQuadratics.jl 3

PiecewiseQuadratics.jl

� Represent and manipulate univariate quadratic functions of the form

f(x) = px2 + qx+ r; 8x 2 [lb; ub]

� Implements several methods useful for optimization

– sum

– derivative

– convex envelope

– proximal operator

– . . .

� Applications to cost functions

– Higher fidelity

– Computationally tractable

PiecewiseQuadratics.jl 4

https://github.com/JuliaFirstOrder/PiecewiseQuadratics.jl

PiecewiseQuadratics.jl

� Represent and manipulate univariate quadratic functions of the form

f(x) = px2 + qx+ r; 8x 2 [lb; ub]

� Implements several methods useful for optimization

– sum

– derivative

– convex envelope

– proximal operator

– . . .

� Applications to cost functions

– Higher fidelity

– Computationally tractable

PiecewiseQuadratics.jl 4

https://github.com/JuliaFirstOrder/PiecewiseQuadratics.jl

PiecewiseQuadratics.jl

� Represent and manipulate univariate quadratic functions of the form

f(x) = px2 + qx+ r; 8x 2 [lb; ub]

� Implements several methods useful for optimization

– sum

– derivative

– convex envelope

– proximal operator

– . . .

� Applications to cost functions

– Higher fidelity

– Computationally tractable

PiecewiseQuadratics.jl 4

https://github.com/JuliaFirstOrder/PiecewiseQuadratics.jl

Example

f(x) =

8>>>><
>>>>:

x2 � 3x + 3 if x 2 [�1; 3]

� x + 3 if x 2 [3; 4]

2x2 � 20x + 47 if x 2 [4; 6]

x � 7 if x 2 [6; 7:5]

4x � 29 if x 2 [7:5;1]

using PiecewiseQuadratics

f = PiecewiseQuadratic([

BoundedQuadratic(lb, ub, p, q, r),

BoundedQuadratic(-Inf, 3.0, 1.0, -3.0, 3.0),

BoundedQuadratic(3.0, 4.0, 0.0, -1.0, 3.0),

BoundedQuadratic(4.0, 6.0, 2.0, -20.0, 47.0),

BoundedQuadratic(6.0, 7.5, 0.0, 1.0, -7.0),

BoundedQuadratic(7.5, Inf, 0.0, 4.0, -29.0)

]);

PiecewiseQuadratics.jl 5

Example

f(x) =

8>>>><
>>>>:

x2 � 3x + 3 if x 2 [�1; 3]

� x + 3 if x 2 [3; 4]

2x2 � 20x + 47 if x 2 [4; 6]

x � 7 if x 2 [6; 7:5]

4x � 29 if x 2 [7:5;1]

using PiecewiseQuadratics

f = PiecewiseQuadratic([

BoundedQuadratic(lb, ub, p, q, r),

BoundedQuadratic(-Inf, 3.0, 1.0, -3.0, 3.0),

BoundedQuadratic(3.0, 4.0, 0.0, -1.0, 3.0),

BoundedQuadratic(4.0, 6.0, 2.0, -20.0, 47.0),

BoundedQuadratic(6.0, 7.5, 0.0, 1.0, -7.0),

BoundedQuadratic(7.5, Inf, 0.0, 4.0, -29.0)

]);

PiecewiseQuadratics.jl 5

Plot

using Plots

plot(get_plot(f); ...)

plot!(get_plot(simplify(envelope(f))); ...)

PiecewiseQuadratics.jl 6

Plot

using Plots

plot(get_plot(f); ...)

plot!(get_plot(simplify(envelope(f))); ...)

PiecewiseQuadratics.jl 6

Outline

PiecewiseQuadratics.jl

LCSO.jl

JuliaFirstOrder

Portfolio Optimization

LCSO.jl 7

Linearly Constrained Separable Optimiaziton

A linearly constrained separable optimization (LCSO) problem:

minimize f(x) =

nX
i=1

fi(xi)

subject to Ax = b;

(1)

where

� the decision variable is x 2 Rn

� the parameters are A 2 Rm�n, b 2 Rm, and the functions fi

LCSO problems can be solved using ADMM.1

� Exactly, if the fi are convex

� Approximately, if they aren’t

1See: arXiv:2103.05455
LCSO.jl 8

https://arxiv.org/abs/2103.05455

Linearly Constrained Separable Optimiaziton

A linearly constrained separable optimization (LCSO) problem:

minimize f(x) =

nX
i=1

fi(xi)

subject to Ax = b;

(1)

where

� the decision variable is x 2 Rn

� the parameters are A 2 Rm�n, b 2 Rm, and the functions fi

LCSO problems can be solved using ADMM.1

� Exactly, if the fi are convex

� Approximately, if they aren’t

1See: arXiv:2103.05455
LCSO.jl 8

https://arxiv.org/abs/2103.05455

Extended-Form LCSO Problems

An extended-form LCSO problem:

minimize
1

2
xTPx+ qTx+

nX
i=1

fi(xi)

subject to Ax = b;

(2)

where

� q 2 Rn, P 2 Sn
+ is a symmetric positive semidefinite matrix

� fi are piecewise quadratic functions

� Extended-form LCSO problems can be reduced to standard LCSO

problem (using an eigendecomposition)2

2See: arXiv:2103.05455
LCSO.jl 9

https://arxiv.org/abs/2103.05455

Extended-Form LCSO Problems

An extended-form LCSO problem:

minimize
1

2
xTPx+ qTx+

nX
i=1

fi(xi)

subject to Ax = b;

(2)

where

� q 2 Rn, P 2 Sn
+ is a symmetric positive semidefinite matrix

� fi are piecewise quadratic functions

� Extended-form LCSO problems can be reduced to standard LCSO

problem (using an eigendecomposition)2

2See: arXiv:2103.05455
LCSO.jl 9

https://arxiv.org/abs/2103.05455

LCSO.jl

� Solves LCSO problems using ADMM (more later...)

� Works with either standard- or extended-form problems

� Can be used to solve convex and non-convex problems (convergence

is only guaranteed for convex problems)

� In practice, converges to a moderately accurate solution quickly

(even if the fi are very complicated)

� The separable functions fi must be piecewise quadratic (see

PiecewiseQuadratics.jl)

� (In theory, could be extended to any fi that support a prox method)

LCSO.jl 10

https://github.com/JuliaFirstOrder/LCSO.jl

LCSO.jl

� Solves LCSO problems using ADMM (more later...)

� Works with either standard- or extended-form problems

� Can be used to solve convex and non-convex problems (convergence

is only guaranteed for convex problems)

� In practice, converges to a moderately accurate solution quickly

(even if the fi are very complicated)

� The separable functions fi must be piecewise quadratic (see

PiecewiseQuadratics.jl)

� (In theory, could be extended to any fi that support a prox method)

LCSO.jl 10

https://github.com/JuliaFirstOrder/LCSO.jl

LCSO.jl

� Solves LCSO problems using ADMM (more later...)

� Works with either standard- or extended-form problems

� Can be used to solve convex and non-convex problems (convergence

is only guaranteed for convex problems)

� In practice, converges to a moderately accurate solution quickly

(even if the fi are very complicated)

� The separable functions fi must be piecewise quadratic (see

PiecewiseQuadratics.jl)

� (In theory, could be extended to any fi that support a prox method)

LCSO.jl 10

https://github.com/JuliaFirstOrder/LCSO.jl

LCSO.jl

� Solves LCSO problems using ADMM (more later...)

� Works with either standard- or extended-form problems

� Can be used to solve convex and non-convex problems (convergence

is only guaranteed for convex problems)

� In practice, converges to a moderately accurate solution quickly

(even if the fi are very complicated)

� The separable functions fi must be piecewise quadratic (see

PiecewiseQuadratics.jl)

� (In theory, could be extended to any fi that support a prox method)

LCSO.jl 10

https://github.com/JuliaFirstOrder/LCSO.jl

LCSO.jl

� Solves LCSO problems using ADMM (more later...)

� Works with either standard- or extended-form problems

� Can be used to solve convex and non-convex problems (convergence

is only guaranteed for convex problems)

� In practice, converges to a moderately accurate solution quickly

(even if the fi are very complicated)

� The separable functions fi must be piecewise quadratic (see

PiecewiseQuadratics.jl)

� (In theory, could be extended to any fi that support a prox method)

LCSO.jl 10

https://github.com/JuliaFirstOrder/LCSO.jl

LCSO.jl

� Solves LCSO problems using ADMM (more later...)

� Works with either standard- or extended-form problems

� Can be used to solve convex and non-convex problems (convergence

is only guaranteed for convex problems)

� In practice, converges to a moderately accurate solution quickly

(even if the fi are very complicated)

� The separable functions fi must be piecewise quadratic (see

PiecewiseQuadratics.jl)

� (In theory, could be extended to any fi that support a prox method)

LCSO.jl 10

https://github.com/JuliaFirstOrder/LCSO.jl

Example

using LCSO

using PiecewiseQuadratics

n = 4 # num features

m = 2 # num constraints

construct problem data

x0 = rand(n)

X = rand(n, n)

ensure P is PSD

P = X'X

q = rand(n)

A = rand(m, n)

b = A * x0

Recall the extended-form (2)

minimize
1

2
xTPx+ qTx+

nX
i=1

fi(xi)

subject to Ax = b:

LCSO.jl 11

Example

using LCSO

using PiecewiseQuadratics

n = 4 # num features

m = 2 # num constraints

construct problem data

x0 = rand(n)

X = rand(n, n)

ensure P is PSD

P = X'X

q = rand(n)

A = rand(m, n)

b = A * x0

Recall the extended-form (2)

minimize
1

2
xTPx+ qTx+

nX
i=1

fi(xi)

subject to Ax = b:

LCSO.jl 11

Example

using LCSO

using PiecewiseQuadratics

n = 4 # num features

m = 2 # num constraints

construct problem data

x0 = rand(n)

X = rand(n, n)

ensure P is PSD

P = X'X

q = rand(n)

A = rand(m, n)

b = A * x0

Recall the extended-form (2)

minimize
1

2
xTPx+ qTx+

nX
i=1

fi(xi)

subject to Ax = b:

LCSO.jl 11

Example

using LCSO

using PiecewiseQuadratics

n = 4 # num features

m = 2 # num constraints

construct problem data

x0 = rand(n)

X = rand(n, n)

ensure P is PSD

P = X'X

q = rand(n)

A = rand(m, n)

b = A * x0

Recall the extended-form (2)

minimize
1

2
xTPx+ qTx+

nX
i=1

fi(xi)

subject to Ax = b:

LCSO.jl 11

Example

x1 has to be 2 [�1; 2] [[2:5; 3:5]
with quadratic penalty 2 [�1; 2]
and linear penalty 2 [2:5; 3:5]
f1 = PiecewiseQuadratic([

BoundedQuadratic(-1, 2,1,0,0),

BoundedQuadratic(2.5,3.5,0,1,0)

])

x2 has to be 2 [�20; 10]
f2 = PiecewiseQuadratic([

BoundedQuadratic(-20,10,0,0,1)

])

x3 has to be 2 [�5; 10]

f3 = indicator(-5, 10)

x4 has to be exactly 1:231
f4 = indicator(1.231, 1.231)

f = [f1, f2, f3, f4]

params = AdmmParams(P, q, A, b, f)

solve

vars, stats = optimize(params)

print(vars.x) # optimal x

[-0.0493, 1.218, -1.932, 1.231]

.

LCSO.jl 12

Example

x1 has to be 2 [�1; 2] [[2:5; 3:5]
with quadratic penalty 2 [�1; 2]
and linear penalty 2 [2:5; 3:5]
f1 = PiecewiseQuadratic([

BoundedQuadratic(-1, 2,1,0,0),

BoundedQuadratic(2.5,3.5,0,1,0)

])

x2 has to be 2 [�20; 10]
f2 = PiecewiseQuadratic([

BoundedQuadratic(-20,10,0,0,1)

])

x3 has to be 2 [�5; 10]

f3 = indicator(-5, 10)

x4 has to be exactly 1:231
f4 = indicator(1.231, 1.231)

f = [f1, f2, f3, f4]

params = AdmmParams(P, q, A, b, f)

solve

vars, stats = optimize(params)

print(vars.x) # optimal x

[-0.0493, 1.218, -1.932, 1.231]

.

LCSO.jl 12

Example

x1 has to be 2 [�1; 2] [[2:5; 3:5]
with quadratic penalty 2 [�1; 2]
and linear penalty 2 [2:5; 3:5]
f1 = PiecewiseQuadratic([

BoundedQuadratic(-1, 2,1,0,0),

BoundedQuadratic(2.5,3.5,0,1,0)

])

x2 has to be 2 [�20; 10]
f2 = PiecewiseQuadratic([

BoundedQuadratic(-20,10,0,0,1)

])

x3 has to be 2 [�5; 10]
f3 = indicator(-5, 10)

x4 has to be exactly 1:231
f4 = indicator(1.231, 1.231)

f = [f1, f2, f3, f4]

params = AdmmParams(P, q, A, b, f)

solve

vars, stats = optimize(params)

print(vars.x) # optimal x

[-0.0493, 1.218, -1.932, 1.231]

.

LCSO.jl 12

Example

x1 has to be 2 [�1; 2] [[2:5; 3:5]
with quadratic penalty 2 [�1; 2]
and linear penalty 2 [2:5; 3:5]
f1 = PiecewiseQuadratic([

BoundedQuadratic(-1, 2,1,0,0),

BoundedQuadratic(2.5,3.5,0,1,0)

])

x2 has to be 2 [�20; 10]
f2 = PiecewiseQuadratic([

BoundedQuadratic(-20,10,0,0,1)

])

x3 has to be 2 [�5; 10]
f3 = indicator(-5, 10)

x4 has to be exactly 1:231
f4 = indicator(1.231, 1.231)

f = [f1, f2, f3, f4]

params = AdmmParams(P, q, A, b, f)

solve

vars, stats = optimize(params)

print(vars.x) # optimal x

[-0.0493, 1.218, -1.932, 1.231]

.

LCSO.jl 12

Example

x1 has to be 2 [�1; 2] [[2:5; 3:5]
with quadratic penalty 2 [�1; 2]
and linear penalty 2 [2:5; 3:5]
f1 = PiecewiseQuadratic([

BoundedQuadratic(-1, 2,1,0,0),

BoundedQuadratic(2.5,3.5,0,1,0)

])

x2 has to be 2 [�20; 10]
f2 = PiecewiseQuadratic([

BoundedQuadratic(-20,10,0,0,1)

])

x3 has to be 2 [�5; 10]
f3 = indicator(-5, 10)

x4 has to be exactly 1:231
f4 = indicator(1.231, 1.231)

f = [f1, f2, f3, f4]

params = AdmmParams(P, q, A, b, f)

solve

vars, stats = optimize(params)

print(vars.x) # optimal x

[-0.0493, 1.218, -1.932, 1.231]

.

LCSO.jl 12

Example

x1 has to be 2 [�1; 2] [[2:5; 3:5]
with quadratic penalty 2 [�1; 2]
and linear penalty 2 [2:5; 3:5]
f1 = PiecewiseQuadratic([

BoundedQuadratic(-1, 2,1,0,0),

BoundedQuadratic(2.5,3.5,0,1,0)

])

x2 has to be 2 [�20; 10]
f2 = PiecewiseQuadratic([

BoundedQuadratic(-20,10,0,0,1)

])

x3 has to be 2 [�5; 10]
f3 = indicator(-5, 10)

x4 has to be exactly 1:231
f4 = indicator(1.231, 1.231)

f = [f1, f2, f3, f4]

params = AdmmParams(P, q, A, b, f)

solve

vars, stats = optimize(params)

print(vars.x) # optimal x

[-0.0493, 1.218, -1.932, 1.231]

.

LCSO.jl 12

Example

x1 has to be 2 [�1; 2] [[2:5; 3:5]
with quadratic penalty 2 [�1; 2]
and linear penalty 2 [2:5; 3:5]
f1 = PiecewiseQuadratic([

BoundedQuadratic(-1, 2,1,0,0),

BoundedQuadratic(2.5,3.5,0,1,0)

])

x2 has to be 2 [�20; 10]
f2 = PiecewiseQuadratic([

BoundedQuadratic(-20,10,0,0,1)

])

x3 has to be 2 [�5; 10]
f3 = indicator(-5, 10)

x4 has to be exactly 1:231
f4 = indicator(1.231, 1.231)

f = [f1, f2, f3, f4]

params = AdmmParams(P, q, A, b, f)

solve

vars, stats = optimize(params)

print(vars.x) # optimal x

[-0.0493, 1.218, -1.932, 1.231]

.

LCSO.jl 12

Example

x1 has to be 2 [�1; 2] [[2:5; 3:5]
with quadratic penalty 2 [�1; 2]
and linear penalty 2 [2:5; 3:5]
f1 = PiecewiseQuadratic([

BoundedQuadratic(-1, 2,1,0,0),

BoundedQuadratic(2.5,3.5,0,1,0)

])

x2 has to be 2 [�20; 10]
f2 = PiecewiseQuadratic([

BoundedQuadratic(-20,10,0,0,1)

])

x3 has to be 2 [�5; 10]
f3 = indicator(-5, 10)

x4 has to be exactly 1:231
f4 = indicator(1.231, 1.231)

f = [f1, f2, f3, f4]

params = AdmmParams(P, q, A, b, f)

solve

vars, stats = optimize(params)

print(vars.x) # optimal x

[-0.0493, 1.218, -1.932, 1.231]

.

LCSO.jl 12

Applications

� Portfolio optimization

� Radiation treatment planning

� Dynamic energy management

� ...

LCSO.jl 13

https://stanford.edu/~boyd/papers/pdf/conrad.pdf
https://stanford.edu/~boyd/papers/pdf/dyn_ener_man.pdf

Applications

� Portfolio optimization

� Radiation treatment planning

� Dynamic energy management

� ...

LCSO.jl 13

https://stanford.edu/~boyd/papers/pdf/conrad.pdf
https://stanford.edu/~boyd/papers/pdf/dyn_ener_man.pdf

Applications

� Portfolio optimization

� Radiation treatment planning

� Dynamic energy management

� ...

LCSO.jl 13

https://stanford.edu/~boyd/papers/pdf/conrad.pdf
https://stanford.edu/~boyd/papers/pdf/dyn_ener_man.pdf

Applications

� Portfolio optimization

� Radiation treatment planning

� Dynamic energy management

� ...

LCSO.jl 13

https://stanford.edu/~boyd/papers/pdf/conrad.pdf
https://stanford.edu/~boyd/papers/pdf/dyn_ener_man.pdf

Outline

PiecewiseQuadratics.jl

LCSO.jl

JuliaFirstOrder

Portfolio Optimization

JuliaFirstOrder 14

JuliaFirstOrder

� GitHub organization for first-order methods in Julia

– https://github.com/JuliaFirstOrder

� Plan to migrate several related packages

– ProximalOperators.jl

– ProximalAlgorithms.jl

– StructuredOptimization.jl

– ...

� Thank you to Miles Lubin for the introductions!

JuliaFirstOrder 15

https://github.com/JuliaFirstOrder
https://github.com/kul-optec/ProximalOperators.jl/
https://github.com/kul-optec/ProximalAlgorithms.jl
https://github.com/kul-optec/StructuredOptimization.jl
https://mlubin.github.io/

Outline

PiecewiseQuadratics.jl

LCSO.jl

JuliaFirstOrder

Portfolio Optimization

Portfolio Optimization 16

Portfolio Optimization

The original mean–variance portfolio optimization problem of Markowitz,

i.e., ”Risk Minimization”

minimize
xT�x� �Tx

subject to 1Tx = 1;
(3)

where

� x 2 Rn is the fraction of the portfolio value in each of n assets

� � 2 Rn is the expected return forecast for the n assets, meaning

�Tx is the expected portfolio return

� � 2 Sn++ is the asset return covariance matrix, meaning xT�x is the

variance of the portfolio return

�
 > 0 is the risk aversion parameter

Portfolio Optimization 17

Portfolio Optimization

The original mean–variance portfolio optimization problem of Markowitz,

i.e., ”Risk Minimization”

minimize
xT�x� �Tx

subject to 1Tx = 1;
(3)

where

� x 2 Rn is the fraction of the portfolio value in each of n assets

� � 2 Rn is the expected return forecast for the n assets, meaning

�Tx is the expected portfolio return

� � 2 Sn++ is the asset return covariance matrix, meaning xT�x is the

variance of the portfolio return

�
 > 0 is the risk aversion parameter

Portfolio Optimization 17

Portfolio Optimization

The original mean–variance portfolio optimization problem of Markowitz,

i.e., ”Risk Minimization”

minimize
xT�x� �Tx

subject to 1Tx = 1;
(3)

where

� x 2 Rn is the fraction of the portfolio value in each of n assets

� � 2 Rn is the expected return forecast for the n assets, meaning

�Tx is the expected portfolio return

� � 2 Sn++ is the asset return covariance matrix, meaning xT�x is the

variance of the portfolio return

�
 > 0 is the risk aversion parameter

Portfolio Optimization 17

Portfolio Optimization

The original mean–variance portfolio optimization problem of Markowitz,

i.e., ”Risk Minimization”

minimize
xT�x� �Tx

subject to 1Tx = 1;
(3)

where

� x 2 Rn is the fraction of the portfolio value in each of n assets

� � 2 Rn is the expected return forecast for the n assets, meaning

�Tx is the expected portfolio return

� � 2 Sn++ is the asset return covariance matrix, meaning xT�x is the

variance of the portfolio return

�
 > 0 is the risk aversion parameter

Portfolio Optimization 17

...With Separable Costs!

The portfolio optimization problem with separable costs:

minimize
xT�x� �Tx+
Pn

i=1 fi(xi)

subject to 1Tx = 1;
(4)

where

� fi are asset-level penalties, like taxes and trading costs, and are

piecewise quadratic

Portfolio Optimization 18

Separable cost examples

� Trading costs:

f trdi (xi) = sijxi � xinit;ij+

(
0 xi = xinit;i

ctrdi otherwise

� Holding cost:

fholdi (xi) =

(
0 xi = 0

choldi otherwise

� Position limits:

f limi (xi) =

(
0 xlb;i � xi � xub;i

1 otherwise

� Combinations of these:

fi(xi) = f trdi (xi) + fholdi (xi) + f limi (xi)

Portfolio Optimization 19

Separable cost examples

� Trading costs:

f trdi (xi) = sijxi � xinit;ij+

(
0 xi = xinit;i

ctrdi otherwise

� Holding cost:

fholdi (xi) =

(
0 xi = 0

choldi otherwise

� Position limits:

f limi (xi) =

(
0 xlb;i � xi � xub;i

1 otherwise

� Combinations of these:

fi(xi) = f trdi (xi) + fholdi (xi) + f limi (xi)

Portfolio Optimization 19

Separable cost examples

� Trading costs:

f trdi (xi) = sijxi � xinit;ij+

(
0 xi = xinit;i

ctrdi otherwise

� Holding cost:

fholdi (xi) =

(
0 xi = 0

choldi otherwise

� Position limits:

f limi (xi) =

(
0 xlb;i � xi � xub;i

1 otherwise

� Combinations of these:

fi(xi) = f trdi (xi) + fholdi (xi) + f limi (xi)

Portfolio Optimization 19

Separable cost examples

� Trading costs:

f trdi (xi) = sijxi � xinit;ij+

(
0 xi = xinit;i

ctrdi otherwise

� Holding cost:

fholdi (xi) =

(
0 xi = 0

choldi otherwise

� Position limits:

f limi (xi) =

(
0 xlb;i � xi � xub;i

1 otherwise

� Combinations of these:

fi(xi) = f trdi (xi) + fholdi (xi) + f limi (xi)

Portfolio Optimization 19

Relaxation

� Problems are often nonconvex

� One way to handle this: Relax the problem by replacing fi with its

convex envelope

f��i (x) = supfg(x) j g is convex and g(x) � fi(x); x 2 dom(fi)g;

then use the result to recover a solution to the original problem

� Easy to compute when fi are piecewise quadratic

� Supported by PiecewiseQuadratics.jl

Portfolio Optimization 20

Relaxation

� Problems are often nonconvex

� One way to handle this: Relax the problem by replacing fi with its

convex envelope

f��i (x) = supfg(x) j g is convex and g(x) � fi(x); x 2 dom(fi)g;

then use the result to recover a solution to the original problem

� Easy to compute when fi are piecewise quadratic

� Supported by PiecewiseQuadratics.jl

Portfolio Optimization 20

Questions?

Portfolio Optimization 21

	PiecewiseQuadratics.jl
	LCSO.jl
	JuliaFirstOrder
	Portfolio Optimization

