Control of Electric Motors and Drives via Convex Optimization

Nicholas Moehle

Advisor: Stephen Boyd

February 5, 2018

Outline

- 1. waveform design for electric motors
 - permanent magnet
 - induction
- 2. control of switched-mode converters

Waveform design for electric motors

traditionally:

- AC motors driven by sinusoidal inputs (and designed for this)¹
- based on reference frame theory, c. 1930

now:

- more computational power
- power electronics can generate near-arbitrary drive waveforms²
- our questions:
 - given a motor, how to design waveforms to drive it?
 - which waveform design problems are tractable? convex?

¹Hendershot, Miller. Design of Brushless Permanent-Magnet Machines. 1994. ²Wildi. Electrical Machines, Drives and Power Systems. 2006.

Motor model

- ▶ *n* windings, each with an *RL* circuit.
- electrical variables:
 - voltage $v(t) \in \mathbf{R}^n$
 - current $i(t) \in \mathbf{R}^n$
 - flux $\lambda(t) \in \mathbf{R}^n$

Motor model

- ▶ the rotor has
 - torque au(t)
 - speed $\omega = \text{const.}$ (high inertia mech. load)
 - position $\theta(t) = \omega t$
- \blacktriangleright goal is to manipulate v to control τ

Stored energy

- stored magnetic energy is $E(\lambda, \theta)$
 - magnetic coupling depends on mechanical position
- E is 2π -periodic in θ
- inductance equation relates current and flux:

$$i =
abla_\lambda E(\lambda, heta)$$

torque given by

$$au = -rac{\partial}{\partial heta} E(\lambda, heta)$$

• in general, both are nonlinear in λ

Torque

▶ the average torque is:

$$ar{ au} = \lim_{T o \infty} rac{1}{T} \int_0^T au(t) \; dt$$

► torque ripple is

$$r = \lim_{T o \infty} rac{1}{T} \int_0^T ig(au(t) - ar{ au}ig)^2 \, dt$$

Power loss

- $R \in \mathbf{S}_{++}^n$ is the (diagonal) resistance matrix
- resistive power loss is $i^T R i$
- average power loss is

$$p_{ ext{loss}} = \lim_{T o \infty} rac{1}{T} \int_0^T i^T R i \; dt$$

Circuit dynamics

dynamics from Kirchoff's voltage law, Faraday's law:

$$v(t) = Ri(t) + \dot{\lambda}(t)$$

• dynamics coupled across windings by inductance equation $i = \nabla_{\lambda} E(\lambda, \theta).$

Winding connection

- \blacktriangleright often, winding voltages v not controlled directly
- (e.g., wye/delta windings, windings contained in rotor)
- ▶ indirect control through terminal voltages $u(t) \in \mathbf{R}^m$

$$Ci(t) = 0,$$
 $v(t) = C^T e(t) + Bu(t),$

- $C \in \mathbf{R}^{p \times n}$ is the connection topology matrix
- $B \in \mathbf{R}^{n \times m}$ is the voltage input matrix
- $e(t) \in \mathbf{R}^p$ are floating node voltages

Winding connection examples

$$Ci(t) = 0,$$
 $v(t) = C^T e(t) + Bu(t),$

simple delta, wye, and independent winding connections
 some windings may be controlled only through induction

 e.g., windings on the rotor

Optimal waveform design

waveform design problem:

 $\begin{array}{ll} \mbox{minimize} & p_{\rm loss} + \gamma r \\ \mbox{subject to} & \bar{\tau} = \tau_{\rm des}, \\ & \mbox{torque equation} \\ & \mbox{inductance equation} \\ & \mbox{circuit dynamics} \\ & \mbox{winding pattern} \end{array}$

• variables are *i*, *v*, *u*, *e*, λ , τ (all functions on **R**₊)

problem data:

- tradeoff parameter $\gamma \geq 0$
- resistance matrix $R \in \mathbf{S}_{++}^n$
- energy function $E: \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}_+$
- shaft speed $\omega \in \mathbf{R}$
- desired torque $au_{\mathtt{des}} \in \mathbf{R}$
- winding connection parameters $B \in \mathbf{R}^{n \times m}$ and $C \in \mathbf{R}^{p \times n}$

- nonconvex in general, due to nonlinear torque and inductance equations
- \blacktriangleright problem data $2\pi\text{-periodic},$ but periodicity of solution not known
 - in practice, solutions often not 2π -periodic in θ

Permanent magnet motor

- magnets in rotor change magnetic flux through windings as they pass, producing voltage across the windings
- by simultaneously pushing current through the windings, electrical energy is extracted (or injected)

Permanent magnet motor

energy function is quadratic:

$$E(\lambda,\theta) = \lambda^T A \lambda + b(\theta)^T \lambda$$

(quadratic part independent of rotor angle)

inductance equation is linear:

$$\lambda = Li + \lambda_{\max}(\theta)$$

 L is the inductance matrix, λ_{mag} is the flux due to rotor magnets

torque equation is affine:

$$au = k(heta)^T i + au_{ ext{cog}}(heta)$$

 $k(\theta)$ is the motor constant, τ_{cog} is the cogging torque

Permanent magnet motor

• dynamics, with λ , are

$$v(t)=Ri(t)+\dot{\lambda}(t)$$

• eliminating λ :

$$v(t) = Ri(t) + Lrac{di}{dt}(t) + \omega k(heta)$$

Permanent magnet motor, waveform design

- optimal waveform design problem is convex
- 2π-periodicity of problem data with convexity implies 2π-periodicity of a solution, if one exists³

³Boyd, Vandenberghe. Convex Optimization, page 189. 2004

Permanent magnet motor, waveform design

waveform design problem:

	power loss	torque ripple
minimize	$\frac{1}{2\pi} \int_{0_{\pi}}^{2\pi} i(\theta)^T Ri(\theta) \ d\theta + \gamma \frac{1}{2\pi} \int_{0_{\pi}}^{2\pi} \int_{0_{\pi}}^{2\pi} i(\theta)^T Ri(\theta) \ d\theta + \gamma \frac{1}{2\pi} \int_{0_{\pi}}^{2\pi} \int_{0_{\pi}}^{2\pi} i(\theta)^T Ri(\theta) \ d\theta + \gamma \frac{1}{2\pi} \int_{0_{\pi}}^{2\pi} i(\theta)^T Ri(\theta)$	$\sum_{\theta=0}^{2\pi} (au(heta) - au_{ m des})^2 d heta$
subject to	$\frac{1}{2\pi} \int_{0}^{T} \tau(\theta) \ d\theta = \tau_{\text{des}}$	(av. torque)
	$ au = k(heta)^T i + au_{ m cog}(heta)$	(torque)
	$v(heta) = Ri(heta) + \omega Li'(heta) + \omega k(heta)$	(dynamics)
	Ci(heta)=0	(winding conn.)
	$v(heta) = C^T e(heta) + B u(heta)$	(winding conn.)

• variables are *i*, *v*, *u*, *e*, τ (all functions on $[0, 2\pi]$)

Permanent magnet motor, waveform design

- ▶ a periodic linear-quadratic control problem
 - can discretize, solve by least squares
- ▶ in fact, many extensions retain convexity:
 - voltage limits $|u(heta)| \leq u_{ ext{max}}$
 - current limits $|i(\theta)| \leq i_{\max}$
 - nonquadratic definitions of torque ripple
- extensions typically involve solving a quadratic program
- more discussion in paper⁴:
 - extensions/variations
 - custom fast solver \rightarrow online waveform generation

⁴Moehle, Boyd. *Optimal Current Waveforms for Brushless Permanent Magnet Motors.* 2015.

Example

Induction motor

- rotor magnets replaced by more windings, which act as electromagnets (with current)
- rotor current produced my magnetic induction (using stator currents)

Induction motor

• Energy function is again quadratic:

$$E(\lambda,\theta) = \lambda^T A(\theta) \lambda$$

quadratic part dependent on θ (affine part omitted for simplicity)

inductance equation is linear:

$$\lambda = L(\theta)i$$

torque is (indefinite) quadratic:

$$\tau = -i^T L'(\theta) i$$

Induction motor, maximum torque problem

- general waveform design problem intractable
- we focus on the maximum torque problem ($\gamma = 0$):
 - torque ripple penalty disappears
 - maximize average torque (a nonconvex quadratic function)
 - power loss constraint (a convex quadratic function)

Induction motor, maximum torque problem

waveform design problem:

	average torque	
maximize	$\lim_{T ightarrow\infty}rac{1}{T}\int_{0}^{T}-i(t)^{T}L'(\omega t)i(t)\;dt$	
subject to	$\lim_{T o\infty}rac{1}{T}\int_{0}^{T}i(t)^{T}Ri(t)\;dt\leq p_{ ext{loss}}$	(power loss)
	$v(t) = \ddot{Ri(t)} + \dot{\lambda}(t)$	(dynamics)
	$egin{aligned} Ci(t) &= 0 \ v(t) &= C^T e(t) + B u(t) \end{aligned}$	(winding conn.)
	$\lambda(t) = L(\omega t)i(t)$	(induction)

• variables are *i*, *v*, *u*, *e*, λ (all functions on **R**₊)

• equivalent to minimizing p_{loss} with average torque constraint

Induction motor, maximum torque problem

 can be converted to a nonconvex linear-quadratic control problem with a quadratic constraint

- strong duality holds
- original proof due to Yakubovich⁵
- ▶ further details in our paper⁶
 - equivalent semidefinite program (SDP)
 - method for constructing optimal waveforms from SDP solution
 - proof of tightness

 ⁵Yakubovich. Nonconvex optimization problem: The infinite-horizon linearquadratic control problem with quadratic constraints. 1992.
 ⁶Moehle, Boyd. Maximum Torque-per-Current Control of Induction Motors via

Semidefinite Programming. 2016.

Example

traditional, sinusoidally wound, 5-phase motor with wye winding:

desired torque $au_{\rm des} = 5$ Nm, speed $\omega = 50$ rad/s

Example

power loss is 11 W per Nm torque produced

Stator fault

Same motor, with open-phase fault:

Stator fault

power loss is 14 W per Nm torque produced

Outline

- 1. waveform design for electric motors
 - permanent magnet
 - induction
- 2. control of switched-mode converters

Controlling switched-mode converters

- input are switch configurations
- traditionally:⁷
 - make discrete input continuous, by considering averaged switch on-time ('duty cycle')
 - 2. choose a duty cycle corresponding to desired equilibrium
 - 3. linearize the resulting system around equilibrium, use linear control
- now:
 - direct (switch-level) control

⁷Kassakian. Principles of power electronics. 1991.

Switched-linear circuit

- ▶ state $x_t \in \mathbf{R}^n$ contains inductor currents, capacitor voltages
 - can be augmented to contain, e.g., reference signal
- for each switch configuration, we have a linear circuit
- switched-affine dynamics:

$$x_{t+1} = A^{u_t} x_t + b^{u_t}, \quad t = 0, 1, \dots,$$

- dynamics specified by A^i , b^i in mode i
- control input is the mode $u_t \in \{1, \ldots, K\}$
- may include mode restrictions (e.g., for a diode)

Switched-affine control

switched-affine control problem is

 $\begin{array}{ll} \text{minimize} & \sum_{t=1}^{T} g(x_t) \\ \text{subject to} & x_{t+1} = A^{u_t} x_t + b^{u_t} \\ & x_0 = x_{\text{init}} \\ & u_t \in \{1, \dots, K\} \end{array}$

- constraints hold for all t
- variables are u_t and $x_t \in \mathbf{R}^n$
- \blacktriangleright problem data are dynamics $A^i,\,b^i,$ function g, and initial condition $x_{\rm init}$
- can be solved by trying out K^T trajectories

'Solution' via dynamic programming

• Bellman recursion: find functions V_t such that

$$V_t(x) = \min_{u \in \{1,...,K\}} g(x) + V_{t+1}(A^u x + b^u)$$

for all x, for $t = T - 1, \ldots, 0$

- final value function $V_T = g$
- ▶ optimal problem value is $V_0(x_{\text{init}})$ at initial state x_{init}
- in general, intractable to compute (or store) V_t

Model predictive control

- ▶ idea: solve switched-affine control problem, implement first control action u₀, measure new system state, and repeat
- ▶ called model predictive control (MPC) or receding horizon control
- given $V = V_1$, MPC policy satisfies

$$\phi_{ ext{mpc}}(x) \in rgmin_{u \in \{1,...,K\}} V(A^u x + b^u)$$

(ties broken arbitrarily)

Approximate dynamic programming policy

- \blacktriangleright in practice, MPC policy only works for T small
- (system response time measured in μ s)
- \blacktriangleright instead, approximate V as a quadratic function \hat{V}
- given \hat{V} , ADP policy satisfies

$$\phi_{ ext{adp}}(x) \in \operatorname*{argmin}_{u \in \{1,...,K\}} \hat{V}(A^u x + b^u)$$

▶ evaluating ϕ_{adp} requires evaluating a few quadratic functions

How to obtain \hat{V} ?

- quadratic lower bounds on V can be found via semidefinite programming⁸
- compute $V(x^{(i)})$ for many states $x^{(i)}$, fit best quadratic function \hat{V}
 - we used this method
 - subproblems solved using methods described in paper⁹
- use exact value function for approximate linear control problem (*e.g.*, linear-quadratic control)
 - provides a link to traditional methods

⁸Wang, O'Donoghue, Boyd. Approximate Dynamic Programming via Iterated Bellman Inequalities. 2014.

⁹Moehle, Boyd. A Perspective-Based Convex Relaxation for Switched-Affine Optimal Control. 2015.

Inverter example

- state x_t are inductor currents and capacitor voltages, and desired output current phasors
- cost function is deviation of output currents from desired (sinusoidally-varying) values
- ▶ model parameters $V_{dc} = 700 \text{ V}$, $L_1 = 6.5 \mu \text{H}$, $L_2 = 1.5 \mu \text{H}$, $C = 15 \mu \text{F}$, $V_{\text{load}} = 300 \text{ V}$, and desired output current amplitude $I_{\text{des}} = 10 \text{ A}$.
- sampling time 30 μs

Result

Policy	State cost
ADP policy,	0.70
MPC policy, $T = 1$	∞
MPC policy, $T = 2$	∞
MPC policy, $T = 3$	∞
MPC policy, $T=4$	∞
MPC policy, $T = 5$	0.45

- for T < 5 MPC policy is unstable
- running MPC with T = 5 takes several seconds on PC
- ADP takes few hundred flops (can be carried out in μ s)

Result

In steady state:

Conclusions

- unconventional motors (asymmetrical, nonsinusoidally-wound, non-rotary) can be controlled using optimization, by designing the waveform to the motor
- modern techniques can be used to generate optimal controllers for power electronic converters, which
 - have fast response
 - can easily incorporate constraints
 - are intuitive to understand and tune
 - make good use of modern microprocessor capabilities

Sources

motors

- N. Moehle, S. Boyd. Optimal Current Waveforms for Brushless Permanent Magnet Motors. International Journal of Control, 2015.
- N. Moehle, S. Boyd. Maximum Torque-per-Current Control of Induction Motors via Semidefinite Programming. Conf. on Decision and Control, 2016.
- N. Moehle, S. Boyd. Optimal Current Waveforms for Switched-Reluctance Motors. Multi-Conf. on Systems and Control, 2016.

converters

- N. Moehle, S. Boyd. A Perspective-Based Convex Relaxation for Switched-Affine Optimal Control. Systems and Control Letters, 2015.
- N. Moehle, S. Boyd. Value Function Approximation for Direct Control of Switched Power Converters. Conf. on Industrial Electronics and Applications, 2017.

Control of Electric Motors and Drives via Convex Optimization